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EXECUTIVE SUMMARY 

RESEARCH PROBLEM  

To save more lives and reduce injuries from 
roadway crashes, agencies must identify sections 
of the highways that have an increased risk of 
crash occurrences. Toward that end, the U.S. 
Department of Transportation’s (USDOT’s) vision 
for the Safety Data Initiative (SDI) includes the 
integration of big data sources as a focus area to 
enhance the general understanding of crash risks 
and mitigate future crash occurrences.  

Current crash estimation or prediction methods, 
such as those in the first edition of the Highway 
Safety Manual (HSM) use annual average daily 
traffic (AADT) data along with geometric 
characteristics to predict the annual average crash 
frequency of roadway segments and intersections. 
One limitation of the HSM is the omission of 
speed-related factors from all aspects of safety 
predictive methods. Recent research has made 
little substantive progress in incorporating speed-related factors into crash predictive models. To 
advance the state of practice this study begins the work of investigating the association between 
crash risk and traffic speeds using traffic speed information from big data.   

OVERVIEW OF METHODOLOGY 

To address the current research gap and as part of the SDI, the Texas A&M Transportation 
Institute (TTI) led a pilot project entitled, ‘Rural Speed Safety.’ This study developed safety 
performance functions (SPFs) by using geometric and operational characteristics that include 
speed-related measures. SPF’s are the statistical “base” models used to estimate the average 
crash frequency for a facility type with specific base conditions. 

Researchers examined the prevailing operating speeds on a large scale and quantified how traffic 
speed in rural areas interacts with roadway characteristics to influence the likelihood of crashes. 
The inclusion of speed information expands upon the existing state of practice by incorporating 
operational data as risk variables through statistical models. The models developed over the 
course of the project include speed measures to quantify highway safety risk and better predict 
crash occurrence.  

The research addressed two major research questions: (1) Do different speed measures contribute 
to crash outcomes? (2) Is there more variability in speeds just prior to a crash? To answer these 
research questions, the project team developed three types of deliverables:  

Key Highlights 
• Variability in daily average traffic 

speeds was associated with 
increased traffic crashes. 

• Differences in traffic speeds 
between weekdays and weekends 
was correlated with increased 
traffic crashes 

• The beta decision support tool was 
developed to interactively visualize 
segment-level risk that includes 
speed variables.  

• The current study is a starting point 
for more in-depth investigation and 
continued progress in incorporating 
speed-related factors into crash 
predictive models. 
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• Conflated databases for Ohio and Washington state that incorporates crash, roadway, and 
traffic data from the Highway Safety Information System (HSIS), travel speed data from the 
National Performance Management Research Data Set (NPMRDS), and roadway information 
from the Highway Performance Monitoring System (HPMS). The data are from 2015. 

• Best-fit models that address the impact of operating speed at the segment and segment-
temporal levels. 

• Static and interactive data visualization tools to show the association between operating 
speed measures and safety outcomes.  

 

GENERAL FINDINGS 

Certain speed measures incorporated into statistical models were found to be beneficial to 
quantifying safety risk. This pilot project established a framework of data conflation and an 
analytical pipeline that will help to include the effects of operation speed measures on crash 
occurrence frequency. It is important to note that this study is a starting point in evaluating the 
effect of operating speed on crash outcomes. It includes all rural facility types, and the 
procedures developed can be applied in other states contributing to HSIS. The project team used 
three different units of analysis in model development: 
• Annual-level crash prediction models: speed measures and crashes at the roadway segment 

level (annual). 
• Daily-level crash prediction models: speed measures and crashes at the roadway segment 

level (daily). 
• Exploratory examination of time before and after crashes: speed measures and crashes 

based on hours around specific roadway locations and points in time. 

Annual-level crash prediction models: The project team developed SPFs using aggregated 
annual data for total (KABCO1) crashes, fatal and injury (KABC) crashes, and property damage 
only (PDO) crashes, for Washington and Ohio separately, as well as for both states together. This 
also includes different functional classifications (roadway types) within the National Highway 
System (NHS). Certain speed measures were useful in the development of the annual segment-
level statistical models. This study examined aggregated traffic travel speed variation over time. 
The current study did not examine the speed variability between the vehicles as NPMRDS 
provides aggregated speed measures. 

Table 1 shows a summary of the impacts on the crash frequency of the variables examined for 
the developed models.  

 

 

                                                 
1 K= Fatal, A= Incapacitating Injury, B=Non-incapacitating Injury, C=Minor Injury, O= No Injury or Property 
Damage Only (PDO) 
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Table 1. Impact of Variable Changes on Crash Frequency at Segment Level (Annual Data) 
 
When 

Crash Frequency On 
Rural Interstate Rural Two-

Lane 
Rural Multilane 

Traffic volume increases Increases Increases Increases 
Segment length increases Increases Increases Increases 
Lane width is wider - Decreases − 

Percentage of horizontal curves 
increases  

Mostly Increases  
(Decreases in OH 

model) 
Increases Increases 

Intersection is present − Increases 
Mostly Increases  
(Decreases in WA 

KABC model) 
Road is undivided  NA NA Increases 
Percentage of days with precipitation 
increases − Decreases Decreases 

Operating speed difference between 
weekend and weekday increases Increases Increases Increases 

Average hourly operating speed 
variability within a day increases − Increases 

Mostly Increases  
(Decreases: WA 
KABCO model) 

Operating speed variability by month 
within a year increases − 

Increases 
(OH PDO 

model only) 
Increases 

Average hourly non-peak non-event 
operating speed increases (free flow) 
increases 

Decreases − Increases 

Average Hourly Speed increases − − − 
Note: at 95% confidence level: Increases (crash frequency goes up), Decreases ((crash frequency goes down), − 
(not significant), NA= not applicable. 

The key findings from the project modeling as shown in the table are the following: 

• Increased variability in hourly operating speed within a day and an increase in monthly 
operating speeds within a year are both associated with increased crashes.  

• Multilane, non-freeway roads with higher free-flow speeds are expected to experience a 
higher crash frequency than those with lower free-flow speeds. However, crash frequency 
decreases for interstate roadways, which is due to their more robust highway design 
standards.  

• When operational speed difference between weekends and weekdays is greater, all three 
roadway types experienced a higher number of crashes. Segments experiencing higher speed 
differentials between weekends and weekdays indicate the nature of roadway use and land 
use patterns.  

• Increased non-peak and non-event speed (average operating speed excluding peak hours and 
hours with events) is associated with an increase in crash frequencies on rural two-lane 
roadways. However, the opposite is true for the Interstate model.  This finding for decreased 
crash frequency on the Interstate could be because good design and high standard roads are 
associated with higher non-peak and non-event speeds. 
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• As the proportion of horizontal curvature on a segment increases, the crash frequencies are 
expected to increase. 

• In general, segments with intersections are expected to experience more crashes than 
segments without intersections. This is likely because segments with intersections have a 
greater number of conflict points. The variable is only significant for multilane roadways.  

Daily-level crash prediction models: Prediction based on annual information limits the SPFs’ 
ability to quantify the effects of variables such as operating speeds, operating speed variance, or 
seasonal differences that fluctuate more often than year-to-year. Agencies require the ability to 
accurately assess what seasonal or daily changes could affect crash outcomes. To address this, 
the study developed statistical models for the segment daily level based on crash severity and 
roadway type. The Tweedie statistical model is applied in the analysis due to the infrequent 
nature of crashes that requires zero inflation2. Table 2 lists the variable changes and affects for 
the developed models.  

Table 2. Impact of Variable Changes on Crash Frequency for the Segment-temporal level 
Models (Daily)   

When Crash Frequency On  
Rural Interstate Rural Two-Lane Rural Multilane 

Traffic volume increases Increases Increases Increases 
Segment length increases Increases Increases Increases 
Number of lanes increases Decreases 

(OH KABC model 
only) 

NA − 

Lane width is wider Increases  
(OH KABC model 

only) 

Decreases  
(WA model only) 

Increases  
(WA model only) 

Number of curvatures 
increases 

Decreases  
(OH KABCO model 

only) 

Decreases  
(WA KABCO model 

only) 

Increases  
(OH model only) 

Total length of curvatures 
is higher − 

Increases 
(WA KABCO model 

only) 
− 

Percentage of days with 
precipitation is higher Increases Increases − 

Variability of daily 
average speed increases Increases Increases Increases 

Daily average speed 
increases Decreases Increases − 

Note: at 95% confidence level: Increases (crash frequency increases), Decreases (crash frequency 
increases), − (not significant), NA= not applicable. 

The general findings from the modeling that used daily data as shown in the table are: 

                                                 
2 TMCs with zero annual crashes are also included in the model.  
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• In all models, a segment with high variation in daily average speeds is expected to experience 
a higher number of crashes than a segment with a lower variation in daily speeds.  The 
strength of this finding is one of the biggest insights gained from this study.  

• Average operating speed increases were associated with increased crashes for rural two-lane 
roadways. However, average operating speed increases were associated with decreased 
crashes in the Interstate models. This finding for interstate could be because good design and 
high standard roads are generally associated with higher average operating speeds. 

• As daily average precipitation increases, so do the number of daily crashes. 
 

Exploratory examination of time before and after crashes: This segment–temporal–level analysis 
examined the speed difference between two scenarios: 1) time around crash events, and 2) time 
around non-crash condition. This study design examined operating speed measures for 4 hours 
prior to a crash, and the speeds being traveled in the same location and same hour and day of 
week, but on a day when no crash occurred. The current analysis is limited to a randomly 
selected sample dataset (with 150 crashes from Washington interstate roadways). The overall 
outcome of this analysis is exploratory in nature. The findings are: 

• After controlling for other influential factors, as the moment of the crash occurrence 
approached, the speed trend for the crash-related series decreased and was substantially 
different in comparison to the trend of the non-crash–related reference series. 

• Speed variability increased for the series just prior to a crash, which was also different from 
the comparison no crash series. 

 
DECISION SUPPORT TOOL 

This project team developed an interactive decision support tool3 that visualizes the Washington 
state and Ohio data results. The data contain the expected total crashes from the final models to 
show segment-level high-risk analysis. The tool (see figure 1) will have adaptability options for 
newer datasets (crash and speed data).  

                                                 
3 https://ruralspeedsafety.shinyapps.io/rss_sdi/ 
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Figure 1. Interface of the Framework of the Decision Support Tool. 

The project team also developed a weblink4 that includes descriptive statistics and data 
visualization tools (both static and interactive). The clickable links provide a more detailed view 
of the speed measures and descriptive statistics, as well as visualization of the association 
between speed measures and crashes at a granular level. 

OPPORTUNITIES AND LESSONS LEARNED 

The opportunities and lessons learned of the current study and future directions are discussed 
below: 

• Certain speed variables were strongly correlated with crash risk. Locating segments with 
high variance in hourly or monthly operating speeds, or large differences in operating speeds 
between weekdays and weekends, could help identify roadways that may warrant additional 
focus for more enforcement, engineering, and education efforts. 

• Current HSM crash prediction models predict crashes for both directions of travel combined; 
this report used bi-directional prediction models that incorporate the distinct directions of 
travel when predicting crashes. Directional prediction models will be useful to many State 
DOTs. 

• Horizontal curves are negatively associated with traffic safety, so special attention can be 
devoted to reducing speeds and improving other traffic conditions on roadways with 
significant quantities of horizontal curves.  

                                                 
4 http://subasish.github.io/pages/FHWA_Rural_Speed_T4_1/ 
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• The current study exclusively focused on rural roadways, and further research is needed to 
consider the association between speed measures, road geometry, and crashes explicitly on 
urban roadways.  

• Newer crowdsourced data fusion can help determine the current research gaps in crash data 
integration and analysis. Some of the potential crowdsourced data sources are Streetlight 
traffic flow data, HERE Navigation and Infotainment data, Waycare incident data, Verizon 
intelligent traffic solution, Strava data, and Miovision Smart City data, amongst many others.  

LIMITATIONS 

The limitations of the current study and future directions are discussed below: 

NPMRDS and HSIS 

• The research used roadway segments based on the NPMRDS travel time data Traffic 
Message Channel, which varied in size with some being quite long. Further examination of 
the effects of segment length would improve modeling reliability. The NPMRDS provides 
travel time data in both directions, but HSIS data provide segment-level information.  

• Different versions of the NPMRDS (versions 1 and 2) were acquired from different vendors. 
The current conflation work (using NPMRDS version 1) may need additional conflation for 
NPMRDS version 2. In many cases, variables of interest are not included uniformly across 
the road networks examined.  

• More robust NPMRDS data with fewer missing values would provide more insightful 
knowledge on operation speed measures. Recent NPMRDS data may have more complete 
data as coverage for these big data sources are improving over time.  

Zero inflation in crash counts 

Model development at a granular level, such as hourly or daily, encounters zero inflation in crash 
counts. This study used a robust modeling technique (the Tweedie model) to develop daily level 
models. There is a need for additional experimentation using other advanced modeling 
techniques that can handle zero inflation at the hourly level.  

Model development and refinement 

• The geometric variables are limited to several factors (for example, segment length, traffic 
volume, segment width, median width, median type, and shoulder width). Additional 
geometric variables (e.g., horizontal and vertical curve, super elevation, and the presence of 
roadside fixed objects) should be examined in future studies.  

• Future expansion of the data conflation to include SHRP2 Roadway Information Database 
(RID) would open the availability of more detailed mobile data (about 5% of the network) 
for 6 States.  

• The current analysis did not incorporate demographic and driver variables in the statistical 
model development. However, the decision support tool provides population density and 
household density at the U.S. Census tract-level on the roadway segments. There is a need 
for the incorporation of demographic variables in safety evaluation. 
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There is a need for continued research progress in incorporating speed-related factors into crash 
predictive models. The current study can be considered as a starting point for the in-depth 
investigation on the speed-crash association.   
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CHAPTER 1. INTRODUCTION 

Research on the influence of vehicle operating speed, roadway design elements, and traffic 
volume on crash outcomes will greatly benefit the road safety profession in general. If the 
relationships between these variables are well understood and characterized, existing techniques 
and countermeasures for reducing crash frequencies and crash severities can potentially improve, 
and new methodologies addressing and anticipating crash occurrence will naturally ensue.  

PROJECT GOALS AND OBJECTIVES  

This study aimed to examine two major research questions: (1) Do different speed measures 
contribute to crash outcomes? (2) Is there more variability in speeds just prior to a crash? Table 3 
displays the questions as well as the dataset structures (described in the following sections) that 
can be used to explore them. 

Table 3. Key Research Questions.  

Num Question DS1 DS2 DS3 
1 Do different operational speed measures contribute to crash 

outcomes?    
 

 1a. To what extent can the operational speed be interpreted as 
directly affecting crash risk or crash severity?   

 

 1b. To what extent can the decision criteria be developed in 
assigning the risk measures in the decision support tool?   

 

 1c. Contingent to the granular level of speed measures, is there 
a discernible relationship between crash risk/severity, 
operational speed, geometric characteristics (for example, 
horizontal and vertical curve information), and traffic volume? 

i. Is the risk for different crash types dependent on the 
operational speed, traffic volume, and geometric 
characteristics?  

ii. Is there a daily cyclical association of crash risk and 
operational characteristics?  

iii. Is there a seasonally cyclical association of crash risk 
and operational characteristics?  

  

 

 1d. How much variability in crash risk/frequency can be 
explained by cyclical factors?     

2 Is there more variability in speeds just prior to a crash?    
DS1 = dataset structure 1 for annual crash prediction. Crash frequency is based on spatial locations (i.e., multiple 
TMCs are examined for a range of facility types/speeds/etc.). 
DS2 = dataset structure 2 for daily crash prediction. Crash frequency is based on spatiotemporal (i.e., a single 
TMC is examined for a variety of time periods or epochs). 
DS3 = dataset structure 3 for exploration of speed difference before crash occurence. Speed behavior is explored 
prior to and during a crash. 

To answer the research questions, the project team had two major goals: (a) develop the 
conflated dataset with traffic speed, roadway design elements, traffic volume information, and 
crash frequency; (b) quantify the targeted relationship between crashes and influential variables. 
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The project team acquired multiple datasets and data conflation strategies applied to previous 
background work (data conflation for North Carolina) from USDOT to perform the related task. 
The team conflated the 2015 data (travel speed data from the NPMRDS, as well as crash, 
roadway, and traffic data from HSIS) and developed several dataset structures as needed to 
achieve the first major goal and used these datasets to examine statistical and machine learning 
tools to determine the most suitable approach to address the second goal.  

This report describes the methodology developed for characterizing the influence of vehicle 
operating speed, roadway design elements, and traffic volumes on crash outcomes. Chapter 2 
presents the data integration work and key descriptive statistics of the selected variables. 
Chapter 3 introduces the final iteration results of the statistical model runs. Chapter 4 synthesizes 
the major findings of this study and provides overall lessons learned about the state of the 
practice as well as suggestions for future research. This report also contains several appendices. 

DATASET STRUCTURES 

This study conflated traffic crash data (for the year 2015) for the States of Washington and Ohio 
at the segment level. The project team identified three dataset structures for the model 
development to determine the effects of speed on crashes. 

Data Structure 1 

Table 4 represents a potential dataset structure for the statistical analysis used for annual-level 
crash prediction models. It does not enlist all potential variables; rather, the intent of the dataset 
structure is to show the basic structure of the dataset that was used in further analyses. The 
project team used dataset structure 1 to develop models for total crashes (KABCO), KABC 
crashes, and PDO crashes, using crash frequency (based on total crashes or crashes for different 
severity levels) as the response variable. For dataset structure 1, the crash frequency is based on 
spatial locations, which are represented by TMC segments. Table 4 shows that each TMC 
segment is conflated with segment information and crash data from the 2015 HSIS data, and 
each of the TMC segments contains weighted values of the HSIS segment-level information. 

Since the speed data are provided at the temporal level, using a suitable speed measure that can 
capture the impact of operating speed at the segment level is necessary. As part of this research, 
determining the appropriate speed measure (see the fourth column in table 4 as an example) to 
use was required. The project team explored and identified representative speed measures that 
were considered in the segment-level analyses (described in Chapter 3).  
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Table 4. Dataset Structure 1 (Spatial Locations or Segment Level). 
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TMC01 1.03 Northbound 55 HSIS01 24,222 Interstate 2 >50 18 
TMC02 1.04 Southbound 56 HSIS01 24,222 Interstate 2 >50 12 
TMC03 0.50 Northbound 52 HSIS02 20,563 Multilane 

Undivided 
2 >50 6 

TMC04 0.58 Southbound 30 HSIS03 8,000 Two-Lane 1 >25 5 
TMC05 0.69 Northbound 22 HSIS04 4,000 Two-Lane 1 >20 0 

Note: vpd = vehicles per day. 
 
Data Structure 2 

Dataset structure 2 uses a spatiotemporal approach (i.e., a single TMC is examined for various 
time periods, or epochs) to develop the daily-level crash prediction models. The fourth column 
(see table 5) is the epoch value that indicates the time of day. It represents a key value from the 
NPMRDS database. Theoretically, a total of 35,040 time bins (i.e., epochs; 365 days × 96 15-
minute bins) or 105,120 epochs (365 days × 288 5-minute bins) level speed measures can be 
assigned to each TMC. To address the missing value issues, aggregation of temporal bins (hourly 
or daily) is a potential solution for the model development using this dataset structure. Like 
dataset structure 1, the response variable for dataset structure 2 is crash frequency (either based 
on total crashes or crashes for different severity levels) for developing models at different 
severity levels. 

Table 5. Dataset Structure 2 (Spatiotemporal or Segment-Temporal Level). 

T
M

C
 

T
M

C
 

L
en

gt
h 

(m
i) 

T
M

C
 

D
ir

ec
tio

n 

E
po

ch
 

T
M

C
 S

pe
ed

 
M

ea
su

re
 (e

ve
ry

 
15

 m
in

 in
 2

01
5)

 
(m

ph
) 

H
SI

S 
Se

gm
en

t 

T
ra

ff
ic

 V
ol

um
e 

(v
pd

) 

C
ra

sh
es

 in
 th

e 
A

ss
oc

ia
te

d 
T

im
e 

Bi
ns

 

TMC01 1.03 Northbound 107 55 HSIS01 24,222 0 
TMC01 1.03 Northbound 108 57 HSIS01 24,222 0 
TMC01 1.03 Northbound 109 NA HSIS01 24,222 0 
TMC01 1.03 Northbound 110 63 HSIS01 24,222 1 
TMC01 1.03 Northbound 111 NA HSIS01 24,222 0 

Note: NA = not applicable. 
 
Data Structure 3 

Dataset structure 3 was used to answer the second research question (see table 3): Is there more 
variability in speeds just prior to a crash? This structure considers whether a crash occurred 
within the given time period and was used to examine speeds before and after crashes (i.e., the 
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value is either 0 or 1 for that variable). It also considers the consecutive epochs before a recorded 
crash. 

To construct the dataset for analysis, all epochs with crash incidents were identified in the 
spatiotemporal dataset (dataset structure 2). All epochs within 4 hours of the incidents were also 
identified and labeled accordingly in a new field named “epoch type” (see table 6). The coding 
of these incident-related epochs was as follows: 

• Before incident (BI): An epoch 4 hours or less before an incident (crash) occurred. 
• During incident (DI): An epoch when an incident occurred. 
• After incident (AI): An epoch 4 hours or less after an incident occurred. 

Table 6. Dataset Structure 3 (Retrospective Time Series or Operational Characteristics in 
Time Proximity to Crashes at the Segment-Temporal Level). 
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BI −2 TMC01 1.03 Northbound 107 55 HSIS01 24,222 0 
BI −1 TMC01 1.03 Northbound 108 57 HSIS01 24,222 0 
DI 0 TMC01 1.03 Northbound 109 NA HSIS01 24,222 1 
AI 1 TMC01 1.03 Northbound 110 63 HSIS01 24,222 0 
AI 2 TMC01 1.03 Northbound 111 NA HSIS01 24,222 0 

Note: NA = not applicable. 
 
The project team also developed a companion dataset of reference sets of epochs to be utilized in 
the analysis. The companion dataset was created as a control to compare normal speed patterns 
in instances when there was no crash versus speed patterns in instances when there was a crash. 
The companion dataset used the same TMC and the same month and day of the week to keep the 
temporal trends similar. The data integration steps of dataset structure 3 are described in 
appendix E. All the epochs of these reference sets were labeled as follows: 

• BI reference (BR): A reference to BI epochs. 
• DI reference (DR): A reference to DI epochs. 
• AI reference (AR): A reference to AI epochs. 

In addition to the epoch type field, a field with relative epochs was added to indicate separation 
from the incident epoch. For example, a value of −2 indicates a BI or BR epoch that is two 
15-minute periods prior to the incident at the corresponding DI or DR epoch. Similarly, a value 
of +3 indicates an AI or AR epoch that is three 15-minute periods after the incident at the 
corresponding DI or DR epoch. 
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CHAPTER 2. DATA INTEGRATION 

INTRODUCTION 

The project team considered two national databases to explore the research questions for 
addressing the current research gaps:  

• The NPMRDS contains passenger and freight travel time datasets for the National Highway 
System (NHS) and other roadways. 

• The HSIS, a cooperative endeavor funded by FHWA, is a roadway-based system that 
provides quality data on a large number of crash, roadway, and traffic variables from a group 
of selected States (California, Illinois, Maine, Michigan, Minnesota, North Carolina, 
Washington, Utah, and Ohio). 

Most of the existing safety models predict crashes for both travel directions combined. With the 
characteristics of the available databases, it is possible to consider each direction of travel 
separately, which permits accounting for different directional traffic volumes and operational 
speeds. Such differences may have distinctive effects on crashes. This study examined the 
prevailing operating speeds on a large scale and considered directionalities on the rural roadway 
networks of Ohio and Washington to see how speed and speed differentials interact with 
roadway characteristics to influence the likelihood of crashes. 

DATA DESCRIPTION 

Two databases (NPMRDS and HSIS) were used in this study to develop the conflated database 
for two focus States (Ohio and Washington). Figure 2 shows the data integration flowchart. The 
data integration work has major three steps: 

• Conflate the HSIS roadway network data to NPMRDS directional network  
• Determine different speed measures by temporal segregation (for example, annual, month or 

daily)  
• Conflate average precipitation (annual and daily) data (from NOAA) to the NPMRDS 

network 
 

The 2015 NPMRDS static files were produced more or less on a quarterly basis. The project 
team used three different static files for 2015: 2014Q3, 2015Q3, and 2015Q4. In an exploration 
of the three static files, researchers found that over 95 percent of the NPMRDS TMCs are the 
same in the rural areas of the States across the three NPMRDS static files. A comparison 
between different static files is shown in a Venn diagram (in figure 3). A comparison between 
2015Q4 and 2015Q3 shows that 2015Q4 has 12,356 TMCs in Washington (left side of figure 2). 
The number of common TMCs (with similar lengths) in both datasets is 11,891. For 247 TMCs 
(around 5 mi long in total length), the distances are not matched in both files. The comparison 
also shows that 2015Q4 has an additional 471 TMCs that were not present in 2015Q3 (only six 
missing in 2015Q4 when compared with 2015Q3). Similar comparisons can be made for 2015Q4 
and 2014Q3 (see right side of figure 3).  
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Figure 2. Data Conflation.  

 
Figure 3. Comparison between Different Static Files Using Washington NPMRDS Data. 

Table 7 provides more granular information on distance thresholds in different quarters of the 
NPMRDS. Based on an examination of the differences, the vast majority of the network was 
usable for the entire 2015 year. 
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Table 7. Comparison of Distances between Different Quarters (Static File). 

Measures Washington Ohio 
2014Q3 2015Q3 2015Q4 2014Q3 2015Q3 2015Q4 

# TMCs 6,624 7,269 8,424 10,665 11,891 12,356 
Total length (mi) 10,062 10,803 11,300 16,545 18,028 18,262 

# Same distance TMCs 
(length) 5,531 (8,205 mi) 7,968 (12,025 mi) 

# Same distance TMCs 
with 2015Q4 (length) 

5,535 
(8,211 mi) 

6,866 
(9,940 mi) 

8,424 
(11,300 mi) 

7,994 
(12,073 mi) 

11,638 
(17,518 mi) 

12,356 
(18,262 mi) 

# Different distance 
TMCs with 2015Q4 

(length) 

1,089 
(1,851 mi) 

403 
(863 mi) NA 2,671 

(4,472 mi) 
253 

(510 mi) NA 

Cumulative difference 
between distances with 

2015Q4 

147 
(1.46% of 
the total 
network 
length) 

5 
(0.03% of 
the total 
network 
length) 

NA 

280 
(1.69% of 
the total 
network 
length) 

8 
(0.02% of the 
total network 

length) 

NA 

# TMCs with difference 
greater than or equal to 

0.1 mi (cumulative 
difference) 

154 
(145 mi) 

12 
(3 mi) NA 268 

(267.54 mi) 
14 

(8 mi) NA 

Note: NA = not applicable. 
 
Data Coverage Using NPMRDS 2015Q4 

This project required that the crashes from HSIS be inserted into the base unit of analysis 
(NPMRDS TMC segment), and further, each of these segments needed a definitive number of 
crashes associated with it. The project mandated an 85 percent or greater match rate of the base 
unit of analysis segments. Table 8 shows the data coverage by the final conflated databases. The 
2015 crashes were assigned to the associated TMC based on the direction algorithm and the 
nearest distance between the crash location and surrounding TMCs. To address the missing 
information in the direction column, some crashes were assigned to the associated TMC based 
on the shortest distance between the crash and linear segments of the TMCs. If one considers 
crashes that are correctly linked to the TMCs based on both direction and distance, Ohio and 
Washington have matching rates of 83 percent and 86 percent, respectively. If one considers both 
approaches (distance plus direction, and distance-only), Ohio and Washington have match rates 
of 89 percent and 98 percent, respectively.  
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Table 8. Data Coverage by the Final Conflated Data. 

State 

Rural 
NHS 

Crashes 
(2015) 

Assigned to TMC 
Segments 

Assigned to Conflated TMC-HSIS 
Segments 

Both 
Distance and 

Direction 

Distance 
Only Total Both Distance 

and Direction 
Distance 

Only Total 

Ohio 11,547 9,603 
(83%) 

859a 
(7%) 

10,462 
(91%) 

9,541 
(83%) 

789 
(7%) 

10,330 
(89%) 

Washington 6,017 5,176 
(86%) 

741b 
(12%) 

5,917 
(98%) 

5,159 
(86%) 

738 
(12%) 

5,897 
(98%) 

a For Ohio, “direction of the vehicle involved in crash” was not available. In the absence of this variable, researchers used 
“direction of reference” to perform the analysis. However, this variable was not well populated. When “direction of reference” 
was not matched with either of the TMC directions or was not available, researchers used only “distance” to assign the crashes. 
b For Washington, if the “direction of the vehicle involved in crash” was not matched with either of the TMC directions or was 
not available, researchers used only “distance” to assign the crashes. 
 
Conflated Data 

The final conflated datasets contain TMC-level crash data for the two States. Table 9 shows the 
basic geometric and traffic characteristics by facility type. Six facility types were considered for 
preliminary analysis: 

• Rural interstate. 
• Rural two-lane. 
• Rural multilane undivided. 
• Rural multilane divided. 
• Rural others (for example, roadways with missing information, such as the number of lanes 

or median width). 

Figure 4 illustrates the number of crashes by severity type in these States. It shows that Ohio 
experienced a significantly higher number of total crashes than Washington in 2015 and that the 
number of non-injury crashes in Ohio was more than double the amount in Washington.  
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Table 9. TMCs and Other Key Characteristics. 

Functional Class TMCs 

Total TMC 
Lengths in 

Both 
Directions 

(mi) 

Average 
Segment 
Length 

(mi) 

AADT 
(vpd) 

Washington         
All Rural 1,122 5,086 4.53 14,824 
Rural Interstate 268 948 3.54 37,053 
Rural Two-Lane 695 3,552 5.11 5,818 
Rural Multilane Undivided 32 83 2.58 14,664 
Rural Multilane Divided 107 439 4.10 18,919 
Rural Others 20 66 3.29 8,273 
Ohio         
All Rural 1,568 5,098 3.25 15,119 
Rural Interstate 347 1,532 4.41 36,722 
Rural Two-Lane 667 1,907 2.86 5,609 
Rural Multilane Undivided 67 105 1.57 12,133 
Rural Multilane Divided 472 1,516 3.21 13,370 
Rural Others 15 38 2.53 6,594 

 

 
Figure 4. Number of Crashes by Severity Types. 

Because the presence of interactions may impact vehicle speed on traffic crashes, understanding 
the interactions due to the presence of intersections was an important consideration in this study. 
In the HSIS database, crashes can be identified as segment (non-intersection) or 
intersection/intersection-related crashes (around 10 percent of total crashes were classified as 
intersection crashes). The current analysis considered both all crashes and non-intersection 
crashes to determine the bias associated with the presence of an intersection. Table 10 lists the 
counts of all crashes and non-intersection crashes based on different facility types. The table 
shows that Ohio roadways have a lower proportion of crashes involving fatalities than 
Washington. 
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Table 10. All Crashes and Non-Intersection Crashes by Facility Type. 

Functional Class 

All Crashes Non-Intersection Crashes 

Total 
(KABCO) 

Fatal 
(K) 

Injury 
(ABC) 

Non-
Injury 
(PDO) 

Total 
(KABCO) 

Fatal 
(K) 

Injury 
(ABC) 

Non-
Injury 
(PDO) 

Washington             
All Rural  5,897   73   1,678   4,146   2,820  40 776 2,004 
Rural Interstate  2,272   20   587   1,665  —* —   — —  
Rural Two-Lane  2,731   41   835   1,855   2,130   33   582   1,515  
Rural Multilane 
Undivided 

 120   1   35   84   67  —     25   42  

Rural Multilane 
Divided 

 643   9   183   451   513   5   139   369  

Rural Others  131   2   38   91   110   2   30   78  
Ohio 

    
    

All Rural  10,251   68   2,264   7,919  3,801  30 815 2,956 
Rural Interstate  5,619   23   1,128   4,468  —   — —   —  
Rural Two-Lane  2,233   27   587   1,619   1,761   20   405   1,336  
Rural Multilane 
Undivided 

 267   1   76   190   191   —     46   145  

Rural Multilane 
Divided 

 2,091   17   462   1,612   1,820   10   359   1,451  

Rural Others  41  —     11   30   29  —     5   24  
Note: * For interstate roadways, crashes are non-intersection-related.  
 
The project team developed a webpage (see appendix F) that includes descriptive statistics and 
data visualization graphics in both static and interactive formats. The links provide more detailed 
insights about the variables of interest.  
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CHAPTER 3. STATISTICAL MODELS 

This chapter provides a brief literature review of studies on the relationship between speed and 
crashes, followed by an in-depth analysis of the statistical model runs for the three data 
structures. Each statistical model section provides a brief theoretical introduction, model results, 
and model inferences. 

STUDIES ON SPEED-CRASH RELATIONSHIP 

Although speed is considered a major contributing factor of roadway crashes, research findings 
are inconsistent. While some studies have found that higher speeds are associated with an 
increased likelihood of collisions, other studies have found the opposite, stating that higher 
speeds are associated with a lower probability of collisions. A few studies have established 
statistical models between operating speed and crash occurrence. However, since traffic crashes 
are random and sporadic events with low occurrence probabilities, spatiotemporal aggregations 
are needed when formulating the analysis datasets. Findings from the related literature review are 
summarized in table 11.  

Abdel-Aty and Radwan (2000) studied speed in a different form, capturing the magnitude of 
speeding relative to the posted speed limit. This speeding indicator variable was shown to 
increase the likelihood of the accident involving male and young drivers. The preliminary 
analysis of a study conducted by Taylor et al. (2000) based in the United Kingdom revealed that 
average speed was positively related to crash frequency. The authors attributed this finding to the 
difference in road quality (urban versus rural) of the road segments sampled; therefore, they 
created homogenous groups through which the effects of road quality on the relationship 
between collisions and speed could be captured.  

Pei et al. (2012) showed that crash risk is negatively associated with average speed when 
controlling for distance exposure (the distance traveled on the road), which goes against research 
that argues that roadway segments designed for higher speeds should deliver better road safety 
performance. Pei et al. (2012) also revealed that there may be other explanatory factors, such as 
road design, weather conditions, and temporal distribution, on the relationship between speed 
and crash risk. Although the information on other possible factors related to crash occurrence, 
including traffic composition and driver behavior, was not available for this study, these factors 
are worthy of exploration in future research. 

Yu et al. (2013) employed a Bayesian inference method to model crashes using 1 year’s worth of 
crash data on I-70 in Colorado. Their model included real-time weather, traffic, and road 
geometry variables and indicated that the weather condition variables play a significant role in 
crash occurrence. This study also suggested that lower speeds at the crash segment and higher 
vehicle occupancy on the road at the upstream segment 5–10 minutes before the crash time 
increases the likelihood of crashes and could be an indication of congestion. However, lower 
speed and higher crash risk can both be the result of severe weather conditions, in which case the 
relationship between the two would be affected by a confounding variable.  
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Table 11. Studies Focusing on the Association between Crash and Operating Speeds. 

Study Analysis 
Level 

Roadway/ 
Location 

Speed 
Measures 

Operating 
Speed Data 

Source 

Key Findings on Speed-
Crash Relationship 

Abdel-Aty 
and Radwan 
(2000) 

Segment Principal 
arterial, 
Florida 

Speeding 
relative to 
posted speed 
limits 

Crash data Speed measure (speeding 
relative to posted speed 
limits) variable was shown 
to increase the crash 
involvement of male and 
young drivers. 

Taylor et al. 
(2000) 

Segment Different 
roadways, 
UK 

Average 
speed 

Road tubes Excessive speed indicator 
was strongly and positively 
associated with crashes. 

Pei et al. 
(2012) 

Segment Both urban 
and rural, 
Hong Kong 

Standard 
deviation of 
average 
speed 

Annual 
traffic 
census 
(ATC) 

Crash risk was negatively 
associated with average 
speed when controlling for 
distance exposure. 

Yu et al. 
(2013) 

Segment Freeways, 
Colorado 

Speed info 
prior to 
crash 
occurrence 

Radars Negative relationships 
were shown between speed 
and crash occurrence. 

Roshandel et 
al. (2015) 

Individual 
crash 

Urban 
freeways 

Average 
speed 

Meta-
analysis 

Increasing values of 
average speed were 
associated with reduced 
crash risk. 

Gargoum and 
El-Basyouny 
(2016) 

Segment Urban two-
lane, 
Canada 

Standard 
deviation of 
speed 

Speed 
survey 
operations 

Standard deviation of speed 
seemed to be negatively 
related to collisions.  

Imprialou et 
al. (2016) 

Traffic 
operation 
scenarios 

Strategic 
road 
network, 
UK 

Grouped 
average 
speed prior 
to crash 
occurrence 

Inductive 
loop 
detectors 

Results of the condition-
based approach showed that 
high speeds trigger crash 
frequency. The outcome of 
the segment-based model 
was the opposite, 
suggesting that the speed-
crash relationship is 
negative regardless of 
crash severity. 

Yu et al. 
(2018) 

Segment Urban 
expressway, 
China 

Average 
speed 

Using 
algorithm 

Segment-based crash 
frequency analysis revealed 
a negative relationship 
between the crash and 
speed. 

Banihashemi 
et al. (2019) 

Segment Urban 
interstate, 
Washington 

Operating 
and posted 
speed 
differential 

NPMRDS Severity of crashes 
measured by the fatal and 
injury/total crashes ratio 
increased by increasing the 
speed differential. 

 



 

21 

Gargoum and El-Basyouny (2016) conducted a study in which they attempted to model the 
relationship between average speed and crash counts while considering effects from confounding 
factors (characteristics of the road, climate, traffic, and vehicle speeds) using structural equation 
modeling. They collected data from 353 different two-lane urban road segments across the city 
of Edmonton during 2009–2013 and found that the standard deviation of speed seemed to be 
negatively related to crash frequencies (i.e., increases in the deviation of speeds from the average 
were related to decreases in crash frequency, and vice versa); however, this relationship was only 
statistically significant at the 10 percent significance level (p-value = 0.088). The results of 
Imprialou et al.’s (2016) segment-based crash-speed relationship study also showed the 
relationship was negative regardless of crash severity. 

In a recent study by Yu et al. (2018), the impacts of aggregation approaches (a segment-based 
dataset grouped by roadway segment, a scenario-based crash dataset aggregated by traffic 
operating scenarios, and a disaggregated crash level from individual crashes) on relationship 
analyses were investigated based on the advanced traffic sensing data of urban expressway 
systems in Shanghai. Crash frequency analyses with segment-based and scenario-based 
approaches were first conducted, and then crash risk analyses were developed at the individual 
crash level. The segment-based crash frequency analysis revealed a negative relationship 
between speed and crash frequency. Yu et al.’s findings suggested that during congestion periods 
(i.e., low and moderate speed conditions), an increase in operating speeds is associated with 
reduced crash likelihoods. Another recent study conducted by Banihashemi et al. (2019) found 
that the severity of crashes (a ratio of fatal and injury [FI] crashes to total crashes) increased as 
the speed variability increased. 

Based on the differing findings regarding the relationship between different speed measures and 
crash risks across the literature, an opportunity exists to further advance this debate. This study 
integrated and analyzed crash and speed data from Ohio and Washington to contribute to this 
ongoing discussion. 

ANNUAL-LEVEL CRASH ANALYSIS  

In this study, the project team used dataset structure 1 (segment-level data) to model annual-level 
crash risk and operating speed for Ohio and Washington State. This section provides a brief 
overview of exploratory data analysis to provide insights into the data. Table 12 through table 15 
list the summary statistics (i.e., mean, standard deviation, minimum, maximum) of the key 
geometric, traffic, and environmental variables and selected speed measures for Ohio and 
Washington for different facility types.  

The speed data on TMC segments are recorded by epoch (5-minute bins in the raw data). 
However, the data are not recorded for every epoch; thus, there are a considerable number of 
missing values. To overcome this issue, the project team averaged the data on a daily or monthly 
basis. Every observation refers to a monthly average speed at a given epoch, which is calculated 
as follows: 
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𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑙𝑙𝑙𝑙 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑒𝑒,𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖 =
1
𝑀𝑀
�𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑒𝑒,𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖

31

𝑛𝑛=1

 (1) 

where:  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑙𝑙𝑙𝑙 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑒𝑒,𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖 = the average epoch 𝐴𝐴 speed at segment 𝑖𝑖 over a 
month. 
𝑀𝑀 = the number of days in a given month. 
𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛,𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑒𝑒,𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖 = the NPMRDS speed on day 𝑀𝑀 and epoch 𝐴𝐴 at segment 𝑖𝑖. 

To minimize the missing value issues, the epochs were summed into 15-minute epochs, resulting 
in 96 speed records per day. However, in preliminary evaluations, both the 5-minute and 
15-minute speed data did not provide adequate measures about the relationships among the 
speed, safety, and operational characteristics of the roadway segment due to a large number of 
missing values. Therefore, other measures of speed were considered. Since the speed data are 
autocorrelated, speeds observed at consecutive epochs are not necessarily independent of each 
other. Because the distributions of the operational speeds vary from facility to facility for 
different spatial and temporal factors, several speed measures (for example, peak-hour 85th 
percentile speed) were examined for the model development for different facility types. For the 
model development documented in this study, the following speed measures were considered: 

• Average hourly speed (SpdAvg). 
• Average hourly speed during non-peak and non-event (1 hour before and 1 hour after a crash 

occurrence) periods (SpdNPNE). 
• Standard deviation of hourly operating speeds (SDHrSpd). 
• Standard deviation of monthly operating speeds (SDMonSpd). 
• Differences in the operating speeds during weekdays and weekends (SpdW_W).  

Exploratory Data Analysis 

Based on the facility types used in the HSM, the project team considered three major facility 
types for model development: (a) rural interstate highways, (b) rural two-lane highways, and 
(c) rural multilane highways. Table 12 lists summary statistics for all relevant variables of 
interest considered for the rural interstate roadways. One interesting finding is that the 
percentage of curves per segment in Ohio is comparatively lower than in Washington. Both 
mean values of SpdAvg and SpdNPNE are lower in Washington than in Ohio. The mean values 
of the speed variability measures (SDHrSpd, SDMonSpd, and SpdW_W) for both States are 
within the range of 0.9–1.5 mph.  
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Table 12. Descriptive Statistics of Rural Interstate Roadways (per Segment). 

  Code Mean SD Min Max 
Ohio  

    
   Total Crashes  KABCO 16 18 0 147 
   Fatal and Injury Crashes  KABC 3 4 0 27 
   PDO Crashes  PDO 13 14 0 120 
   Segment Length (mi) Len 4 3 0.1 14 
   Annual Average Daily Traffic (vehicle per day) Vol(AADT) 36,722 11,360 4,870 75,040 
   Lane Width (ft) LW 55 11 32 73 
   Presence of Intersection PIntPre 0 0 0 0 
   Percentage of Curve  PerHC 2.3 54.2 0 21.2 
   Percentage of Days with Precipitation PPrcp 23.5 44 2 67 
   Average Hourly Speed (mph) SpdAvg 63.0 5.4 30.5 85.1 
   Average Hourly Non-Peak Non-Event Speed (mph) SpdNPNE 65.9 4.7 33.3 85.0 
   Standard Dev. of Hourly Operating Speeds (mph)  SDHrSpd 1.0 0.7 0.0 7.3 
   Standard Dev. of Monthly Operating Speeds (mph) SDMonSpd 1.0 0.8 0.0 7.4 
   Avg. Spd. Diff. in Weekday/Weekend (mph) SpdW_W 1.1 0.5 0.7 7.2 
Washington  

    
   Total Crashes  KABCO 8 9 0 58 
   Fatal and Injury Crashes  KABC 2 3 0 18 
   PDO Crashes  PDO 6 6 0 40 
   Segment Length (mi) Len 4 2.7 0.1 11 
   Annual Average Daily Traffic (vehicle per day) Vol(AADT) 37,053 24,157 0 128,331 
   Lane Width (ft) LW 58 14 31 100 
   Presence of Intersection PIntPre 0 0 0 0 
   Percentage of Curve PerHC 23.4     27.3 0.0 97 
   Percentage of Days with Precipitation PPrcp 36.5 20.4 1 65 
   Average Hourly Speed (mph) SpdAvg 59.8 6.3 17.2 67.2 
   Average Hourly Non-Peak Non-Event Speed (mph) SpdNPNE 63.8 4.5 23.1 82.2 
   Standard Dev. of Hourly Operating Speeds (mph)  SDHrSpd 1.5 1.0 0.0 10.0 
   Standard Dev. of Monthly Operating Speeds (mph) SDMonSpd 0.9 0.4 0.0 4.1 
   Avg. Spd. Diff. in Weekday/Weekend (mph) SpdW_W 1.5 0.8 0.5 10 

 
Table 13 provides summary statistics for all relevant variables of interest considered for the rural 
two-lane roadways. The statistics show that the percentage of curves and the percentage of days 
with precipitation for the rural two-lane roadways in Ohio are comparatively lower than for the 
rural two-lane roadways in Washington. Contrary to the interstate trends, both mean values of 
SpdAvg and SpdNPNE are higher in Washington than in Ohio. The mean values of the speed 
variability measures (SDHrSpd, SDMonSpd, and SpdW_W) for rural two-lane roadways in both 
States are within the range of 0.6–2.1 mph. 
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Table 13. Descriptive Statistics of Rural Two-Lane Roadways (per Segment). 

  Code Mean SD Min Max 
Ohio  

    
   Total Crashes  KABCO 3 4 0 28 
   Fatal and Injury Crashes  KABC 1 1 0 9 
   PDO Crashes  PDO 2 3 0 19 
   Segment Length (mi) Len 3 2 0.1 15 
   Annual Average Daily Traffic (vehicle per day) Vol(AADT) 5,609 2,581 818 15,070 
  Lane Width (ft) LW 25 4 18 48 
   Presence of Intersection PIntPre 0.3 0.5 0 1 
   Percentage of Curve PerHC 6.7 17.2 0 100 
   Percentage of Days with Precipitation PPrcp 23 45 5 85 
   Average Hourly Speed (mph) SpdAvg 44.9 9.6 13.5 71.3 
   Average Hourly Non-Peak Non-Event Speed (mph) SpdNPNE 52.1 8.3 16.9 85.0 
   Standard Dev. of Hourly Operating Speeds (mph)  SDHrSpd 1.4 1.0 0.0 10.0 
   Standard Dev. of Monthly Operating Speeds (mph) SDMonSpd 0.6 0.5 0.0 7.1 
   Avg. Spd. Diff. in Weekday/Weekend (mph) SpdW_W 1.9 0.4 1.2 5.6 
Washington  

    
   Total Crashes  KABCO 4 5 0 34 
   Fatal and Injury Crashes  KABC 1 2 0 12 
   PDO Crashes  PDO 3 3 0 24 
   Segment Length (mi) Len 5 4 0.1 25 
   Annual Average Daily Traffic (vehicle per day) Vol(AADT) 5,818 4,490 0 26,493 
   Lane Width (ft) LW 25 4 20 67 
   Presence of Intersection PIntPre 0.4 0.5 0.0 1 
   Percentage of Curve PerHC 33.7     27.3 0.0 100 
   Percentage of Days with Precipitation PPrcp 37.1 21.9 0.0 70 
   Average Hourly Speed (mph) SpdAvg 47.3 11.2 4.5 85.0 
   Average Hourly Non-Peak Non-Event Speed (mph) SpdNPNE 55.0 10.0 6.8 85.0 
   Standard Dev. of Hourly Operating Speeds (mph)  SDHrSpd 1.7 1.6 0.0 10.0 
   Standard Dev. of Monthly Operating Speeds (mph) SDMonSpd 0.8 0.6 0.0 4.4 
   Avg. Spd. Diff. in Weekday/Weekend (mph) SpdW_W 2.1 0.6 1.9 6.2 

 
Table 14 provides summary statistics for all relevant variables of interest considered for the rural 
multilane roadways. The statistics show that the percentage of curves and the percentage of days 
with precipitation for the rural multilane roadways in Ohio are comparatively lower than for the 
rural multilane roadways in Washington. Contrary to the two-lane trends and similar to the 
interstate trends, both mean values of SpdAvg and SpdNPNE are lower in Washington than in 
Ohio. The mean values of the speed variability measures (SDHrSpd, SDMonSpd, and SpdW_W) 
for rural multilane roadways in both States are within the range of 0.7–1.5 mph. 
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Table 14. Descriptive Statistics of Rural Multilane Roadways (per Segment). 

  Code Mean SD Min Max 
Ohio  

    
   Total Crashes  KABCO 4 5 0 36 
   Fatal and Injury Crashes  KABC 1 2 0 10 
   PDO Crashes  PDO 3 4 0 27 
   Segment Length (mi) Len 3 2 0.1 12 
   Annual Average Daily Traffic (vehicle per day) Vol(AADT) 13,216 6,449 3,108 40,840 
   Lane Width (ft) LW 48 5 26 69 
   Presence of Intersection PIntPre 0.2 0.7 0 1 
   Percentage of Curve PerHC 5.1 15.6 0 100 
   Percentage of Days with Precipitation PPrcp 22 16.6 5 80 
   Average Hourly Speed (mph) SpdAvg 54.3 12.1 18.6 85.0 
   Average Hourly Non-Peak Non-Event Speed (mph) SpdNPNE 59.6 9.6 26.4 86.1 
   Standard Dev. of Hourly Operating Speeds (mph)  SDHrSpd 1.2 1.4 0.0 10.0 
   Standard Dev. of Monthly Operating Speeds (mph) SDMonSpd 0.7 0.5 0.0 4.8 
   Avg. Spd. Diff. in Weekday/Weekend (mph) SpdW_W 1.2 0.7 0.9 6.1 
Washington  

    
   Total Crashes  KABCO 5 6 0 32 
   Fatal and Injury Crashes  KABC 2 2 0 11 
   PDO Crashes  PDO 4 5 0 26 
   Segment Length (mi) Len 4 3 0.1 12 
   Annual Average Daily Traffic (vehicle per day) Vol(AADT) 17,940 12,508 0 77,827 
   Lane Width (ft) LW 48 7 29 76 
   Presence of Intersection PIntPre 0.5 0.5 0 1 
   Percentage of Curve PerHC 30.9 29.3 0 100 
   Percentage of Days with Precipitation PPrcp 44.5 23.1 19.2 95.1 
   Average Hourly Speed (mph) SpdAvg 52.0 13.3 14.5 85.0 
   Average Hourly Non-Peak Non-Event Speed (mph) SpdNPNE 57.8 11.0 20.8 85.0 
   Standard Dev. Of Hourly Operating Speeds (mph)  SDHrSpd 1.5 1.7 0.3 10.0 
   Standard Dev. Of Monthly Operating Speeds (mph) SDMonSpd 0.8 0.8 0.0 4.7 
   Avg. Spd. Diff. in Weekday/Weekend (mph) SpdW_W 0.8 1.3 0.0 9.2 

 
Geometric and Traffic Variables 

Figure 5 and figure 6 show variabilities between segment length in miles, AADT in vehicles per 
day, and surface width in feet on the y-axes (from left to right) for different facility types (along 
the x-axis) in Ohio and Washington. The violin plots compare distributions of quantitative data 
across categorical levels (like box and whisker plots) and provide a kernel-density estimation by 
illustrating the distribution of the values in the form of a mirrored histogram or density plot. The 
shape or width of the violins is the visual display of the frequencies. This plot can be an effective 
and attractive way to show multiple distributions of data at once; however, the estimation 
procedure is influenced by the sample size, so violins for relatively small samples might look 
misleadingly smooth. Additionally, the lower smoothing points of these estimations go beyond 
zero values, but the actual speed measures are always greater than zero. The line inside the white 
rectangular box indicates that median and outer edges are interquartile ranges. The whiskers 
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show a 95 percent confidence interval. Figure 5 and figure 6 provide insights about the key 
variables and their potential to differentiate between facility types by state.  

 
Note: 0_RI = Rural Interstate; 1_R2L = Rural Two-Lane; 3_RM = Rural Multilane 

Figure 5. Distribution of Segment Length, AADT, and Surface Width (Ohio Data). 

 
Note: 0_RI = Rural Interstate; 1_R2L = Rural Two-Lane; 3_RM = Rural Multilane 
Figure 6. Distribution of Segment Length, AADT, and Surface Width (Washington Data). 

Figure 7 illustrates the density plots of AADT by facility types for Washington and Ohio, 
respectively. The conflated data have speed measures in each direction. However, AADT and 
other geometric variables combine both directions. The plots indicate that an increase in AADT 
is associated with a higher facility type (e.g., rural interstate). The trends in AADT distribution 
are similar between the States.  
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Figure 7. Density of Traffic Volumes by States. 

Since the safety literature shows the significance of length and AADT on crashes, the project 
team plotted AADT against total crashes. Figure 8 and figure 9 show the scatterplots of the 
annual crash frequency versus the total AADT for each of the TMC segments in Ohio and 
Washington, respectively. The blue line in these plots indicates a nonparametric scatterplot 
nonlinear smoother. The gray areas surrounding the blue line indicate the 95 percent confidence 
interval boundary. Based on these plots, it appears that the relationship holds true up to certain 
ranges, but it is not as strong as the literature suggests. For example, in Ohio rural interstates, the 
TMC segments with the highest total crashes are not necessarily the TMC segments with the 
highest AADT. However, the overall trends are upward.  
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Note: 0_RI = Rural Interstate; 1_R2L = Rural Two-Lane; 3_RM = Rural Multilane 

Figure 8. Annual Crash Frequency vs. Total AADT (Ohio). 

 
Note: 0_RI = Rural Interstate; 1_R2L = Rural Two-Lane; 3_RM = Rural Multilane 

Figure 9. Annual Crash Frequency vs. Total AADT (Washington). 

Figure 10 and figure 11 show the scatterplots of the annual crash frequency versus the selected 
speed measures for each of the TMC segments in Ohio and Washington, respectively. The speed 
measures range from 0 to 80 mph. The positive assertion between speed and crash frequencies 
holds true up to certain ranges for the first two speed measures (SpdAvg and SpdNPNE). It is 
difficult to depict any trend between the speed variability measures (SDHrSpd, SDMonSpd, and 
SpdW_W) and crashes since the values ranges between 0 and 10 mph. However, slight upward 
trends are visible for most of the speed variability measures.  
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Note: 0_RI = Rural Interstate; 1_R2L = Rural Two-Lane; 3_RM = Rural Multilane 

Figure 10. Speed Measures vs. Total Crashes (Ohio). 

 
Note: 0_RI = Rural Interstate; 1_R2L = Rural Two-Lane; 3_RM = Rural Multilane 

Figure 11. Speed Measures vs. Total Crashes (Washington). 
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Correlation Analysis 

The project team developed and used Pearson correlation plots for each facility type (figure 12 
and figure 13) to show the positive or negative correlation between the variables. In these plots, 
blue means positive and red means negative. The stronger the color, the larger the correlation 
magnitude. The variables of the rural interstate roadways have higher correlation values than the 
other two roadways. The correlation plots shown here are based on raw data and total (KABCO) 
crashes only. The plots show that the segment length, traffic volume, and five speed measures 
(exception: standard deviation of hourly operating speeds in both rural two-lane and multilane 
roadways in Washington and standard deviation of monthly operating speeds in rural two-lane 
roadways in Washington) are positively associated with total crashes. The project team 
considered all major geometric variables, five speed measures, and weather-related variables 
after removing some outliers. 

   

Rural Interstate Roadways Rural Two-Lane Roadways Rural Multilane Roadways 
Figure 12. Correlation Plots (Ohio Data). 

   
Rural Interstate Roadways Rural Two-Lane Roadways Rural Multilane Roadways 

Figure 13. Correlation Plots (Washington Data). 
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Safety Performance Functions by Facility Types 

Separate models were developed for total (KABCO), KABC, and PDO crashes. Experience with 
the regression-based calibration of SPFs and crash modification factors (CMFs) using total, 
KABC, and PDO crashes indicates that the calibration coefficients often vary among model 
types for common variables. Some of this variation is likely due to the fact that geometric 
elements often have a different effect on KABC crashes than on PDO crashes. Further, it is 
widely recognized that PDO crash counts vary widely on a regional basis due to significant 
variations in the reporting threshold. When crash frequency varies systematically from county to 
county, district to district, and State to State because of formal and informal differences in the 
reporting threshold, the use of PDO crash data to build PDO crash prediction models may yield 
inaccurate results about the variable influence. Thus, the project team developed models for three 
severity levels to understand the difference in variable effects. Except for curve length and 
radius, the interaction between the variables was not considered. As noted by Srinivasan and 
Bauer (2013), interactions are not usually considered during SPF development. The authors 
mentioned that there is no easy way to identify which interactions are important and how they 
should be included in a model unless there is some theoretical reason for including certain 
interactions. 

Most available crash prediction models currently predict crashes for both directions of travel 
combined. The project team developed directional prediction models that incorporate the distinct 
directions of travel when predicting crashes. These directional prediction models (known as 
SPFs) have the potential to be useful to many State DOTs. The models show that traffic volume 
and length are positively associated with a high number of crashes. The discussions about these 
two variables are not provided in the model explanation section due to the nature of their 
presence and similarity in all models.  

Models Developed for Interstate Roadways 

The model presented below was informed by findings from several preliminary regression 
analyses: 

𝑁𝑁𝑖𝑖 = 𝐿𝐿 × 𝐴𝐴𝑏𝑏0,𝑖𝑖+𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ln(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇) × 𝐶𝐶𝑀𝑀𝐶𝐶ℎ𝑒𝑒 × 𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑑𝑑𝑖𝑖𝑠𝑠 × 𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠1 × 𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠2 × 𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 ×
𝐶𝐶𝑀𝑀𝐶𝐶𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒; I = 4 or 6  (2) 

with,  

 𝐶𝐶𝑀𝑀𝐶𝐶ℎ𝑒𝑒 = 1.0 + 𝑏𝑏ℎ𝑒𝑒 �
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 𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑑𝑑𝑖𝑖𝑠𝑠 = 𝐴𝐴𝑏𝑏𝑠𝑠𝑎𝑎(𝑆𝑆𝑒𝑒𝑑𝑑𝐴𝐴𝑖𝑖𝑠𝑠𝑠𝑠) 
 𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠1 = 𝐴𝐴𝑏𝑏𝑠𝑠𝑠𝑠1(𝐼𝐼𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠1) 
 𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠2 = 𝐴𝐴𝑏𝑏𝑠𝑠𝑠𝑠2(𝐼𝐼𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠2) 
 𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐴𝐴𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑆𝑆) 
 𝐶𝐶𝑀𝑀𝐶𝐶𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 = 𝐴𝐴𝑏𝑏𝑝𝑝𝑠𝑠𝑒𝑒𝑐𝑐(𝑒𝑒𝑝𝑝𝑠𝑠𝑒𝑒𝑐𝑐) 
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where:  

𝑁𝑁𝑖𝑖 = predicted annual average crash frequency for model i (i = four or six lanes). 
𝐿𝐿 = segment length, miles. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = average annual daily traffic, vehicles per day. 
𝐶𝐶𝑀𝑀𝐶𝐶ℎ𝑒𝑒 = crash modification factor for horizontal curve. 

𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑑𝑑𝑖𝑖𝑠𝑠 = crash modification factor for the speed difference between weekends and 
weekdays. 

𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠1 = crash modification factor for variance in hourly operating speeds. 
𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠2 = crash modification factor for variance in monthly operating speeds. 
𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 = crash modification factor for free-flow speed. 
𝐶𝐶𝑀𝑀𝐶𝐶𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 = crash modification factor for precipitation. 

𝑅𝑅𝑚𝑚𝑖𝑖𝑛𝑛 = radius of the sharpest curve, feet. 
𝐿𝐿𝑒𝑒 = total length of all horizontal curves on the segment. 

𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑖𝑖𝑆𝑆𝑆𝑆 = percent difference of operating speeds between weekends and weekdays. 
𝐼𝐼𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠1 = indicator variable for high variance in hourly operating speeds within a day 

(= 1 if hourly standard deviation is > 1 mph; = 0 otherwise). 
𝐼𝐼𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠2 = indicator variable for high variance in monthly operating speeds within a 

year (= 1 if monthly standard deviation is > 1 mph; = 0 otherwise). 
𝑆𝑆𝐶𝐶𝐶𝐶 = free-flow speed, mph. 
𝑆𝑆𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 = percent of days with precipitation. 

𝑏𝑏𝑗𝑗 = calibrated coefficients. 
 
The project team calculated the Pearson correlation coefficient and found that the correlation 
between independent variables is very small, as shown in table 15. For this reason, the project 
team decided that the interaction between the variables in the model is not necessary. 

Table 15. Correlation Analysis Results. 

  AADT 𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑖𝑖𝑆𝑆𝑆𝑆 𝐼𝐼𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠1 𝐼𝐼𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠2 𝑆𝑆𝐶𝐶𝐶𝐶 
AADT 1 

    

𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑖𝑖𝑆𝑆𝑆𝑆 0.23105 1 
   

𝐼𝐼𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠1 0.11233 0.28541 1 
  

𝐼𝐼𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠2 −0.0826 0.09433 0.23296 1 
 

𝑆𝑆𝐶𝐶𝐶𝐶 0.1028 −0.0038 0.02121 −0.0222 1 
 
The predictive model calibration process consisted of the simultaneous calibration of four-lane 
and six-lane models and variable effects using the aggregate model. The simultaneous calibration 
approach was needed because the AADT and speed-related effects were common to four-lane 
and six-lane highways. The inverse dispersion parameter, K (which is the inverse of the 
overdispersion parameter), is allowed to vary with the segment length. The inverse dispersion 
parameter is calculated using: 

𝐾𝐾 = 𝐿𝐿 × 𝐴𝐴𝑘𝑘   (3) 
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where: 

𝐾𝐾 = inverse dispersion parameter. 
𝑘𝑘 = calibration coefficient for inverse dispersion parameter. 

 
Table 16 lists the model outputs of rural interstate roadways. Appendix B includes all individual 
models.  

Table 16. Model Estimation Results of Yearly Crash Frequencies at Segments (Rural 
Interstate). 

Note: A dash (—) = not significant at the 95% level; NA = not applicable.  
 
The explanations of the model outcomes are provided below. 

Percentage of curve: This variable represents the combination of the presence of horizontal 
curves and the radius of the sharpest curve on the segment. The coefficient for the model of both 
States together as well as Washington only shows that as the proportion of horizontal curvature 
increases, the number of crashes is expected to increase. Moreover, an increase in the sharpness 
of the curve tends to be associated with high crash frequencies. The coefficient for Ohio data is 
significant but counterintuitive, which could be due to the correlation with other unknown 
factors, the curve-related crash reporting issues, or the missing values related to curve 

Variable Two States Ohio Washington 
KABCO KABC PDO KABCO KABC PDO KABCO KABC PDO 

Traffic volume 
(AADT) 0.7613 0.8221 0.7594 0.8028 1.0500 0.7611 0.6358 0.6498 0.7098 

Lane width (LW) — — — — — — — — — 
Percentage of curve 
(PerHC) 0.0825 0.0827 0.06865 −0.6258 — −0.7141 0.0909 0.0780 0.0665 

Avg. spd. diff. in 
weekday/weekend 
(SpdW_W) 

0.1068 — 0.0992 — — — 0.1568 0.1063 0.1439 

Standard dev. of hourly 
operating speeds 
(SDHrSpd) 

— — — — — — — — — 

Standard dev. of 
monthly operating 
speeds (SDMonSpd) 

— — — — — — — — — 

Average hourly non-
peak non-event speed 
(SpdNPNE) 

−0.0378 −0.0551 −0.0406 −0.0547 −0.0549 −0.0578 — — — 

Presence of 
intersection (IntPre) NA NA NA NA NA NA NA NA NA 

Percentage of days 
with precipitation 
(PPrcp) 

— — — — — — — — — 

Added effect of Ohio 0.6284 0.4119 0.6926 NA NA NA NA NA NA 
Inverse dispersion 
parameter for 4-lane 
segments  

−0.4359 −0.4875 −0.4972 −0.4634 −0.5888 −0.4935 — — — 

Inverse dispersion 
parameter for 6-lane 
segments 

−0.4672 — −5.0697 −0.7741 −0.6853 −0.7845 — — — 

Intercept  −4.9668 −5.8519 −5.0697 −3.5814 −7.7923 −3.1117 −6.2446 −4.9994 −7.3084 
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information in the Ohio HSIS data. It is also important to note that Ohio roadways with curves 
show comparatively lower in proportion than Washington.  

Average speed difference in weekday/weekend: This variable represents the percent difference 
of operating speeds between weekends and weekdays. Generally, this variable is always greater 
than zero because the operating speeds during weekends are usually higher than weekdays. The 
variable value is much greater than zero if the road experiences frequent congestion on the 
weekday or when over-speeding is frequent on weekends due to free-flow conditions. The 
coefficient is positive in all models, which indicates that as the difference in operating speeds 
between weekends and weekdays increases for a particular segment, the number of crashes is 
expected to increase. 

Standard deviation in hourly operating speeds: This variable represents the operating speed 
variation among the hours of a day. The coefficient is not significant in any model. It is possible 
that the variation among the hours is negligible because rural interstates tend to have similar 
speeds throughout the day.  

Standard deviation in monthly operating speeds: This variable represents the operating speed 
variation between the months of a year. The coefficient is not significant in any model. It is 
possible that the variation among the hours is negligible because rural interstates tend to have 
similar speeds throughout the various months. 

Non-peak non-event operating speed: This variable represents the operating speed under the 
non-peak and non-event conditions. The coefficient is negative in almost all cases and is 
statistically significant, which means that as the non-peak and non-event speeds increase, crashes 
are supposed to decrease. This finding could be because well-designed and high-standard roads 
are generally associated with higher non-peak and non-event speeds. 

Percentage of days with precipitation: This variable represents the percent of days with some 
level of precipitation. It is insignificant in all models, meaning precipitation has no significant 
effect on crashes occurring on interstates. Generally, precipitation is associated with higher wet-
weather crashes, which constitute a minor proportion of all crashes, and this element may be why 
this model fails to show a significant effect on all crashes. 

State effect: When the two States’ data are combined, the coefficient for Ohio is positive and 
significant, which means that—controlling for the other variables—Ohio is associated with more 
crashes than Washington. This finding could be due to differences in weather, terrain, reporting 
threshold, and other variables that were not considered in the model. 

Models Developed for Two-Lane Highways 

Different variable combinations and various model forms were examined to identify the best 
possible relationship between the number of crashes and independent variables. The model 
presented below was informed by findings from several preliminary regression analyses. This 
model form includes variables that are intuitive, are in line with previous findings, and best fit 
the data.  
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𝑁𝑁𝑡𝑡𝑡𝑡 = 𝐿𝐿𝐴𝐴𝑀𝑀 × 𝐴𝐴𝑏𝑏0+𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ln(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇) × 𝐶𝐶𝑀𝑀𝐶𝐶𝑡𝑡𝑙𝑙 × 𝐶𝐶𝑀𝑀𝐶𝐶ℎ𝑒𝑒 × 𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑑𝑑𝑖𝑖𝑠𝑠 × 𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠1 × 𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠2 ×
𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 × 𝐶𝐶𝑀𝑀𝐶𝐶𝑖𝑖𝑛𝑛𝑡𝑡 × 𝐶𝐶𝑀𝑀𝐶𝐶𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒  (4) 

with,  

 𝐶𝐶𝑀𝑀𝐶𝐶𝑡𝑡𝑙𝑙 =  𝐴𝐴𝑏𝑏𝑙𝑙𝑙𝑙(𝑙𝑙𝑙𝑙−12) 

𝐶𝐶𝑀𝑀𝐶𝐶ℎ𝑒𝑒 = 1.0 + 𝑏𝑏ℎ𝑒𝑒 �
𝐿𝐿𝑒𝑒
𝐿𝐿
� 

𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑑𝑑𝑖𝑖𝑠𝑠 = 𝐴𝐴𝑏𝑏𝑠𝑠𝑎𝑎(𝑆𝑆𝑒𝑒𝑑𝑑𝐴𝐴𝑖𝑖𝑠𝑠𝑠𝑠) 
 𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠1 = 𝐴𝐴𝑏𝑏𝑠𝑠𝑠𝑠1(𝐼𝐼𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠1) 
 𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠2 = 𝐴𝐴𝑏𝑏𝑠𝑠𝑠𝑠2(𝐼𝐼𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠2) 
 𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐴𝐴𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠(𝑆𝑆𝑆𝑆𝑆𝑆) 
 𝐶𝐶𝑀𝑀𝐶𝐶𝑖𝑖𝑛𝑛𝑡𝑡 =  𝐴𝐴𝑏𝑏𝑖𝑖𝑛𝑛𝑎𝑎𝐼𝐼𝑖𝑖𝑛𝑛𝑎𝑎   
  𝐶𝐶𝑀𝑀𝐶𝐶𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 = 𝐴𝐴𝑏𝑏𝑝𝑝𝑠𝑠𝑒𝑒𝑐𝑐(𝑒𝑒𝑝𝑝𝑠𝑠𝑒𝑒𝑐𝑐) 

where: 

𝑁𝑁𝑡𝑡𝑡𝑡 = predicted annual average crash frequency (rural two-lane roadways). 
𝐿𝐿𝐴𝐴𝑀𝑀 = segment length, miles. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = average annual daily traffic, vehicles per day. 
𝐶𝐶𝑀𝑀𝐶𝐶𝑡𝑡𝑙𝑙 = crash modification factor for lane width. 
𝐶𝐶𝑀𝑀𝐶𝐶ℎ𝑒𝑒 = crash modification factor for horizontal curve. 

𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑑𝑑𝑖𝑖𝑠𝑠 = crash modification factor for speed difference between weekends and 
weekdays. 

𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠1 = crash modification factor for variance in hourly operating speeds. 
𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠2 = crash modification factor for variance in monthly operating speeds. 
𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 = crash modification factor for free-flow speed. 
𝐶𝐶𝑀𝑀𝐶𝐶𝑖𝑖𝑛𝑛𝑡𝑡 = crash modification factor for presence of an intersection on the segment. 
𝐶𝐶𝑀𝑀𝐶𝐶𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 = crash modification factor for precipitation. 

𝑤𝑤𝑡𝑡 = average lane width in both directions (ft). 
𝐿𝐿𝑒𝑒 = total length of all horizontal curves on the segment. 

𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑖𝑖𝑆𝑆𝑆𝑆 = percent difference in operating speeds between weekends and weekdays. 
𝐼𝐼𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠1 = indicator variable for high variance in hourly operating speeds within a day 

(= 1 if hourly standard deviation is > 1 mph; = 0 otherwise). 
𝐼𝐼𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠2 = indicator variable for high variance in monthly operating speeds within a 

year (= 1 if monthly standard deviation is > 1 mph; = 0 otherwise). 
𝑆𝑆𝐶𝐶𝐶𝐶 = free-flow speed, mph. 

𝐼𝐼𝑖𝑖𝑛𝑛𝑡𝑡 = indicator variable for intersection presence (= 1 if present; = 0 otherwise). 
𝑆𝑆𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 = percent of days with precipitation. 

𝑏𝑏𝑗𝑗 = calibrated coefficients (j = hc, sd, svar1, svar2, sff, int, prec). 
 
Table 17 lists the model outputs of rural two-lane highways. Appendix B includes all individual 
models.  
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Table 17. Model Estimation Results of Yearly Crash Frequencies at Segments 
(Rural Two-Lane). 

Variable Two States Ohio Washington 
KABCO KABC PDO KABCO KABC PDO KABCO KABC PDO 

Traffic volume 
(AADT) 0.6048 0.6435 0.5679 0.3706 0.5967 0.3352 0.6962 0.6744 0.7048 

Lane width 
(LW) — — — — — — −0.0962 −0.1814 −0.0672 

Percentage of 
curve (PerHC) 0.8681 1.0319 0.8230 — — — 1.1538 1.1829 1.1356 

Avg. spd. diff. 
in 
weekday/weeke
nd 
(SpdW_W) 

— — 0.02845 — — — 0.0444 — 0.0445 

Standard dev. 
of hourly 
operating 
speeds 
(SDHrSpd) 

— 0.1654 — — — — — 0.1878 — 

Standard dev. 
of monthly 
operating 
speeds 
(SDMonSpd) 

— — — — — 0.3224 — — — 

Average hourly 
non-peak non-
event speed 
(SpdNPNE) 

— — — — — — — — — 

Presence of 
intersection 
(IntPre) 

0.3163 0.2769 0.3296 0.4498 0.4074 0.3817 0.2278 0.1801 0.2398 

Percentage of 
days with 
precipitation 
(PPrcp) 

−0.5372 — −0.6149 — — — — — −1.0547 

Added effect of 
Ohio 0.6332 0.4103 0.6691 NA NA NA NA NA NA 

Intercept  −5.8138 −7.6705 −5.8097 −3.6772 −6.8237 −3.4111 −6.5573 −7.9683 −6.9051 
Note: A dash (—) = not significant at the 95% level; NA = not applicable.   
 
The explanations of the model outcomes are provided below. 

Percentage of curve: This variable represents the proportion of the segment with horizontal 
curves. The two-state and Washington models show positive and significant coefficients, 
demonstrating that as the proportion of horizontal curvature increases, the number of crashes 
increases. In preliminary models, the sharpness of the curve was not found to be statistically 
significant, which does not mean that the curve sharpness has no effect; instead, it is possible that 
the variability in the data variable may be too low to show a statistical significance for this 
dataset. Similar reasoning can be attributed to the insignificance of the horizontal curvature 
variable in Ohio. 

Lane width: This variable represents the average of lane widths in both directions. For both 
States together, the coefficient is negative for KABCO crashes and KABC crashes, but not at the 
95 percent significance level (not reported here). For Washington-only data, the variable is 
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significant and negative in all cases, which means that the increase in lane width on a particular 
segment is associated with lower crash frequencies.  

Average speed difference in weekday/weekend: This variable represents the percent difference 
of operating speeds between weekends and weekdays. The variable value is much greater than 
zero if the road experiences frequent congestion during the weekday or if the weekend speeds are 
much higher due to fewer vehicles on these types of roads. The coefficient is significant and 
positive for both States (PDO crashes) and for Washington (KABCO and PDO crashes), which 
means that with higher weekend speeds (compared to weekday speeds), more crashes (especially 
PDO crashes) are expected to occur, perhaps due to congestion during weekdays or higher 
speeds on the weekends. 

Standard deviation in hourly operating speeds: This variable represents the operating speed 
variation among the hours of a day, with an indicator variable of 1 for those segments where the 
standard deviation was greater than 1 mph. The coefficient is positive and statistically significant 
for KABC crashes in the two-state and Washington-only models. A segment with high variation 
in hourly operating speeds (i.e., >1.4 mph) is expected to experience a higher number of KABC 
crashes than a segment with a lower variation in hourly speeds.  

Standard deviation in monthly operating speeds: This variable represents the operating speed 
variation among the months of a year, with an indicator variable of 1 for those segments where 
the standard deviation was greater than 1 mph. The coefficient is insignificant for both KABCO 
and KABC crashes in all models but positive and significant for PDO crashes in the Ohio-only 
model. A segment with high variation in monthly operating speeds (i.e., >1 mph) is expected to 
experience a higher number of PDO crashes than a segment with a lower variation in monthly 
speeds. 

Non-peak non-event operating speed: This variable represents the operating speed during non-
peak and non-event hours. The coefficient is insignificant for all crashes, irrespective of the data 
used, which could be due to the low variation in the non-peak non-event speeds between the 
segments considered in the study.  

Percentage of days with precipitation: This variable represents the percent of days with some 
level of precipitation. The coefficient is negative and significant in most of the models. This 
finding is counterintuitive because it shows that segments with more precipitation tend to have 
fewer crashes than other segments. However, it is possible that vehicle speeds reduce during wet-
weather conditions, which may lead to fewer crashes. 

Intersection presence: This variable has a value of 1 if at least one intersection is on the 
segment. The coefficient is positive and significant in all cases. This finding indicates that rural 
two-lane segments with intersections are associated with higher crash frequencies than segments 
without intersections, as expected. With intersections, the conflict points increase; thus, the 
chance of more crashes increases. 

State effect: When the two States’ data are combined, the coefficient for Ohio is positive and 
significant, which means that when controlling for the other variables, Ohio is expected to 
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experience more crashes than Washington. This finding could be due to differences in weather, 
terrain, reporting threshold, and other variables that were not considered in the model. 

Models Developed for Multilane Roadways 

The form considered for the rural multilane roads was:  

𝑁𝑁𝑚𝑚𝑡𝑡 = 𝐿𝐿 × 𝐴𝐴𝑏𝑏0+𝑏𝑏𝑢𝑢+𝑏𝑏𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ln(𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇) × 𝐶𝐶𝑀𝑀𝐶𝐶𝑡𝑡𝑙𝑙 × 𝐶𝐶𝑀𝑀𝐶𝐶ℎ𝑒𝑒 × 𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑑𝑑𝑖𝑖𝑠𝑠 × 𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠1 × 𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠2 ×
𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 × 𝐶𝐶𝑀𝑀𝐶𝐶𝑖𝑖𝑛𝑛𝑡𝑡 × 𝐶𝐶𝑀𝑀𝐶𝐶𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒  (5) 

where: 

𝑏𝑏𝑢𝑢 = adjustment for undivided road. 
𝑁𝑁𝑚𝑚𝑡𝑡 = predicted annual average crash frequency (rural multilane roadways). 
𝐿𝐿𝐴𝐴𝑀𝑀 = segment length, miles. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = average annual daily traffic, vehicles per day. 
𝐶𝐶𝑀𝑀𝐶𝐶𝑡𝑡𝑙𝑙 = crash modification factor for lane width. 
𝐶𝐶𝑀𝑀𝐶𝐶ℎ𝑒𝑒 = crash modification factor for horizontal curve. 

𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑑𝑑𝑖𝑖𝑠𝑠 = crash modification factor for the speed difference between weekends and 
weekdays. 

𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠1 = crash modification factor for variance in hourly operating speeds. 
𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠2 = crash modification factor for variance in monthly operating speeds. 
𝐶𝐶𝑀𝑀𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 = crash modification factor for free-flow speed. 
𝐶𝐶𝑀𝑀𝐶𝐶𝑖𝑖𝑛𝑛𝑡𝑡 = crash modification factor for the presence of an intersection on the segment. 
𝐶𝐶𝑀𝑀𝐶𝐶𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 = crash modification factor for precipitation. 

𝑤𝑤𝑡𝑡 = average lane width in both directions (ft). 
𝐿𝐿𝑒𝑒 = total length of all horizontal curves on the segment. 

𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑖𝑖𝑆𝑆𝑆𝑆 = percent difference in operating speeds between weekends and weekdays. 
𝐼𝐼𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠1 = indicator variable for high variance in hourly operating speeds within a day 

(= 1 if hourly standard deviation is > 1 mph; = 0 otherwise). 
𝐼𝐼𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠2 = indicator variable for high variance in monthly operating speeds within a 

year (= 1 if monthly standard deviation is > 1 mph; = 0 otherwise). 
𝑆𝑆𝐶𝐶𝐶𝐶 = free-flow speed, mph. 

𝐼𝐼𝑖𝑖𝑛𝑛𝑡𝑡 = indicator variable for intersection presence (= 1 if present; = 0 otherwise). 
𝑆𝑆𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 = percent of days with precipitation. 

𝑏𝑏𝑗𝑗 = calibrated coefficients (j = hc, sd, svar1, svar2, sff, int, prec). 
 
Table 18 lists the model outputs of rural multilane highways. Appendix B includes all individual 
models.  
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Table 18. Model Estimation Results of Yearly Crash Frequencies at Segments 
(Rural Multilane). 

Variable Two States Ohio Washington 
KABCO KABC PDO KABCO KABC PDO KABCO KABC PDO 

Undivided road  0.2686 0.3903 — 0.4826 0.4598 0.4513 — 0.3376 — 
Traffic volume 
(AADT) 0.4848 0.3573 0.5529 0.4335 0.3381 0.4945 0.6473 0.6593 0.7084 

Lane width (LW) — — — — — — — — — 
Percentage of curve 
(PerHC) 2.0307 1.574 2.3082 1.5865 — — 3.6393 0.9047 4.7683 

Avg. spd. diff. in 
weekday/weekend 
(SpdW_W) 

0.05879 — 0.05048 0.0666 — 0.0599 — — — 

Standard dev. of 
hourly operating 
speeds (SDHrSpd) 

— 0.2418 — — 0.4081 — −0.292 — — 

Standard dev. of 
monthly operating 
speeds 
(SDMonSpd) 

0.3911 — 0.4013 0.2969 — 0.3553 0.8381 1.0588 0.6856 

Average hourly 
non-peak non-event 
speed (SpdNPNE) 

0.0269 0.0239 0.0251 0.0308 0.0238 0.03055 — 0.0598 — 

Presence of 
intersection 
(IntPre) 

0.5714 0.5625 0.5797 0.6052 0.7757 0.5664 0.452 −0.0212 0.5999 

Percentage of days 
with precipitation 
(PPrcp) 

−1.9369 — −1.8614 −1.7573 — −2.3932 — — — 

Added effect of 
Ohio 0.8282 0.3397 1.0050 NA NA NA NA NA NA 

Inverse dispersion 
parameter for 
undivided roads 

−0.5868 −0.2271 −0.6188 −0.601 −0.5042 −0.5522 −0.4212 0.0506 −0.417 

Inverse dispersion 
parameter for 
divided roads 

−0.9955 −0.8616 −0.9469 −1.0595 −0.6138 −1.0097 −0.4212 0.0506 −0.417 

Intercept  −6.4938 −6.9752 −7.4546 −5.5104 −6.5777 −6.0308 −6.4405 −11.196 −7.634 
Note: A dash (—) = not significant at the 95% level; NA = not applicable.  
 
The explanations of the model outcomes are provided below. 

Undivided road: This variable represents whether the segment is undivided or divided. The 
coefficient is positive and significant in almost all cases (exception: PDO crashes for the two-
state model, and KABCO and PDO crashes for the Washington model). This finding indicates 
that undivided rural multilane roads experience more crashes than divided roads experiencing the 
same traffic and other conditions. For undivided roads, the likelihood of opposite-direction and 
turning-related crashes is relatively higher than for divided roads, which may also be a reason 
this relationship was not significant for PDO crashes.  

Percentage of curve: The coefficient is positive and significant in all cases, except for KABC 
and PDO crashes in the Ohio model. It shows that a higher proportion of horizontal curvature is 
associated with a higher number of crashes. The sharpness of the curve was not statistically 
significant in the preliminary models. 
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Average speed difference in weekday/weekend: The coefficient is significant and positive for 
KABCO and PDO crashes in the Ohio and two-state models, which means the increase in the 
difference in speeds between weekends and weekdays is associated with more crashes, perhaps 
due to occasional congestion during weekdays or higher speeds on weekends. 

Standard deviation of hourly operating speeds: The coefficient is positive for KABC in the 
Ohio and two-state models but insignificant for most of the other conditions. The exception is the 
coefficient for this variable using the Washington KABCO data, which was negative, thus 
indicating a counterintuitive result. Additional investigation into this variable is needed. The 
positive coefficients for KABC in the Ohio and two-state models show that a segment with 
variation in hourly operating speeds of more than 1 mph is expected to experience a higher 
number of crashes than a segment with a lower variation in hourly speeds.  

Standard deviation of monthly operating speeds: When the coefficient is statistically 
significant, it is positive. A segment with variation in monthly operating speeds of more than 1 
mph is expected to experience a higher number of crashes than a segment with a lower variation 
in monthly speeds. 

Average hourly non-peak non-event speed: The coefficient for non-peak non-event times is 
significant for most of the cases and positive. This finding means that with the increase in non-
peak non-event speeds, crashes increase. 

Percentage of days with precipitation: The coefficient is negative and significant in most of 
the models. This finding is counterintuitive because it shows that segments with more 
precipitation tend to have fewer crashes than other segments. However, it is possible that the 
vehicle speeds reduce during the wet-weather conditions, so the result may be fewer crashes. 

Presence of intersection: The variable is positive and significant in most cases (exception: 
KABC model for Washington). This finding means that segments with at least one intersection 
tend to have more crashes than segments without intersections, as expected. With intersections, 
the conflict points increase, thereby increasing the number of crashes. 

State effect: When the two States’ data are combined, the coefficient for Ohio is positive and 
significant for Ohio crashes only, which means that when controlling for the other variables, 
Ohio is expected to experience the same number of KABC crashes but more PDO crashes than 
Washington. This finding could be due to the difference in weather, terrain, reporting threshold, 
and other variables that were not used in the model. 

Model Validation 

Cumulative residual (CURE) plots were used to conduct the validation for models developed 
using the two States’ combined data. The CURE plots show the performance of the model with 
respect to a particular variable. Hauer (2015) showed that the model performance is reasonable if 
the plot of cumulative residuals oscillates around 0, ends close to 0, and does not exceed the 
±2*standard deviation bounds. If the plot of residuals shows any systemic drift, then it can be 
concluded that the model provides biased estimates. Figure 14a–c shows the CURE plots for the 
rural two-lane highway models. All CURE plots show that the model fits the data along the 
entire range of AADT values because the cumulative graphs have a random walk oscillating 
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around zero and end close to zero. Figure 14d shows the best-fit CURE plot for the rural 
multilane highway models. The CURE plot for KABC crashes shows that the model fits the data 
along the entire range of AADT values because the cumulative graph has a random walk 
oscillating around zero and ends close to zero. The project team also developed severity 
distribution functions (SDFs) for different facility types. Appendix C documents the SDFs for 
different facility types.  

  
(a) Rural Two-Lane (KABCO—Two States) (b) Rural Two-Lane (KABC—Two States) 

  
(c) Rural Two-Lane (PDO—Two States) (d) Rural Multilane (KABC—Two States) 

Figure 14. CURE Plots. 

The overall findings from the annual segment-level analyses were: 

• Certain speed measures were useful in the development of the annual-level crash prediction 
models.  

o Increased variability in hourly operating speed within a day and increased monthly 
operating speeds within a year were both associated with higher crash frequencies.  

o Operational speed differences between weekends and weekdays were positively 
associated with a higher number of crashes. Segments experiencing higher speed 
differentials between weekends and weekdays likely indicate the nature of roadway-
use and land-use patterns.  

o Non-peak and non-event speed (average operating speed excluding peak hours and 
hours with events) was positively associated with crash rates on rural two-lane 
roadways. However, this speed measure was negatively associated with crashes in the 
interstate model. This finding for interstates could be because well-designed and 
high-standard roads are generally associated with higher non-peak and non-event 
speeds. 
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• As the proportion of horizontal curvature on a segment increased, the number of crashes 
could be expected to increase. The coefficient for the Ohio data was significant but 
counterintuitive, which could be due to the correlation with other unknown factors, the 
curve-related crash reporting issues, or the missing values related to curve information in the 
Ohio HSIS data.  

• In general, segments with intersections could be expected to experience higher crash 
frequencies than segments without intersections, which is likely because segments with 
intersections have a greater number of conflict points. The variable was only significant for 
multilane roadways.  

• The precipitation measure was negatively associated with annual crash frequencies. The 
finding indicates that short-term crash predication models will be suitable in exploring the 
temporal effect of precipitation measures.  

DAILY-LEVEL CRASH PREDICTION ANALYSIS 

The annual-level crash prediction models do not allow users to estimate crashes precisely at short 
durations (e.g., hours, days, weeks, months). The annual estimation methods limit the ability to 
quantify the effects of variables that fluctuate at a granular temporal scale, such as operating 
speeds, operating speed variances, or seasonal fluctuations. A need exists to explore the 
development and functional forms of crash prediction methods using finite exposure measures 
and representing short-term roadway conditions to better account for these variables and 
understand short-term fluctuations in highway safety performance. To mitigate the current 
research gap, the project team developed daily level models separately for Ohio and Washington. 
Since several of the variables are segment-related, a closer look at the daily level of variables 
(for example, average daily precipitation, average daily speed [SpdAvgDaily], and standard 
deviation of daily speed [SDDailySpd]) is provided in figure 15 and figure 16. A key finding 
from the violin plots shown in figure 15 and figure 16 is that there is a greater distribution for 
precipitation in Washington compared to Ohio. The average daily speed is lowest for rural two-
lane highways compared to the other facility types in both States; however, the medians of 
standard deviation of average daily speed are the greatest for two-lane highways, with rural 
interstates having the lowest value. 
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Note: 0_RI = Rural Interstate; 1_R2L = Rural Two-Lane; 3_RM = Rural Multilane 

Figure 15. Box and Violin Plots of Three Daily Level Variables (Ohio Data).  

 
Note: 0_RI = Rural Interstate; 1_R2L = Rural Two-Lane; 3_RM = Rural Multilane 

Figure 16. Box and Violin Plots of Three Daily Level Variables (Washington Data).  

Functional Form of Tweedie Distribution 

Because dataset structure 2 contains a number of zeros where no crash occurs during the hour 
time period at a given segment, a need exists for an advanced modeling technique. The Poisson-
Tweedie family can use the simple estimation of the power parameter to automatically adapt to 
highly skewed count data with excessive zeros without the need to introduce zero-inflated or 
hurdle components. The distributions of the spike counts given the predictor are assumed to 
follow the Tweedie distribution. The Tweedie family includes the Poisson distribution, the 
Gaussian distribution, and the gamma distribution. However, the case that interests this data 
structure most in the Tweedie family is the compound Poisson family. The following theorical 
description is mostly based on Dina and Nelken study (2014).  
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The project team used the Poisson distribution with rate 𝜆𝜆 to select 𝑀𝑀 independent variables, and 
then the identically distributed variables were summed to generate a sample of the compound 
Poisson distribution. In the Tweedie case, these variables come from the gamma distribution 
with shape parameter 𝛼𝛼 and scale parameter 𝛽𝛽.  

Therefore, the Tweedie distribution can be written as:  

Pr[𝑌𝑌 = 0] = 𝐴𝐴−𝜆𝜆,  
 

 

𝑆𝑆𝑌𝑌(𝑙𝑙) = 𝐴𝐴−𝛽𝛽𝑑𝑑𝐴𝐴−𝜆𝜆 ∑ 𝛽𝛽𝑛𝑛𝑛𝑛

Γ(𝑛𝑛𝑑𝑑)
∞
𝑛𝑛=1 𝑙𝑙𝑛𝑛𝑛𝑛−1 𝜆𝜆

𝑛𝑛

𝑛𝑛!
,        𝑙𝑙 > 0    (6) 

 
where 𝑙𝑙 = 0 if the Poisson variable is null, or the distribution of 𝑙𝑙 is given by a mixture of 
gamma variables with Poisson weights (Dina and Nelken, 2014).  

The Tweedie distribution also fits to the exponential family. It is important for the application of 
the generalized linear model (GLM) context. The members of the exponential family follow the 
distribution function: 

𝑆𝑆𝑌𝑌(𝑙𝑙; 𝜃𝜃,𝜑𝜑) = 𝐴𝐴𝑒𝑒𝑆𝑆 �𝑑𝑑𝑦𝑦−𝑏𝑏(𝑦𝑦)
𝑑𝑑(𝜑𝜑)

+ 𝑐𝑐(𝑙𝑙,𝜑𝜑)�  ,     𝑙𝑙𝑦𝑦𝑅𝑅𝜓𝜓    (7) 

 
for some specific functions a(.), b(.), and c(.).  

If 𝜙𝜙 is identified, this equation is a 1-parameter exponential family model with canonical 
parameter 𝜃𝜃. The average and the variance of 𝑌𝑌 can be expressed by 𝐸𝐸(𝑌𝑌) = 𝜇𝜇 =
𝑏𝑏′(𝜃𝜃), 𝐴𝐴𝐴𝐴𝐴𝐴(𝑌𝑌) = 𝑏𝑏′′(𝜃𝜃)𝐴𝐴(𝜙𝜙). Because the parameter 𝜃𝜃 is connected to the mean (𝜇𝜇), 𝑏𝑏′′(𝜃𝜃) also 
depends on the average and is called the variance function. The variance function can be 
represented by 𝑉𝑉(𝜇𝜇). The Tweedie distribution links to the choice of 𝑏𝑏′′(𝜃𝜃) = 𝜇𝜇𝑒𝑒 and 𝐴𝐴(𝜙𝜙) = 𝜙𝜙 
for 1 ≤ 𝑆𝑆 ≤ 2. Here, 𝑆𝑆 and 𝜙𝜙 are mutual to all spike counts in each set of measurement, while 
the parameter 𝜇𝜇 can vary.  It is vital to set 𝜂𝜂 = log (𝜇𝜇) to be a linear combination of dummy 
variables that measures the effects of time bins on the responses. Since 𝑏𝑏′′(𝜃𝜃) is fundamentally 
the variance, this procedure confirms that the variance (𝐴𝐴𝐴𝐴𝐴𝐴) and the average 𝜇𝜇 are related as 
𝐴𝐴𝐴𝐴𝐴𝐴 = 𝜙𝜙𝜇𝜇𝑒𝑒.  

This characteristic of the Tweedie distribution summarizes the overdispersion of spike counts 
relative to the Poisson case. To achieve these relationships, the connections of 𝜙𝜙, 𝑆𝑆, and 𝜇𝜇 to 𝜆𝜆, 
𝛼𝛼, and 𝛽𝛽 are given by: 

𝜇𝜇 =
𝜆𝜆𝛼𝛼
𝛽𝛽

 

𝜙𝜙𝜇𝜇𝑒𝑒 = 𝜆𝜆𝑛𝑛(𝑛𝑛+1)
𝛽𝛽2

 with 𝜇𝜇 > 0 and 𝜙𝜙 > 0   (8) 

or for other direction: 

𝜆𝜆 = 𝜇𝜇2−𝑝𝑝

𝜙𝜙(2−𝑒𝑒)
,     𝛼𝛼 = 2−𝑒𝑒

𝑒𝑒−1
,       1

𝛽𝛽
= 𝜙𝜙(𝑆𝑆 − 1)𝜇𝜇𝑒𝑒−1    (9) 
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The parameterization can be written as follows: 

𝜃𝜃 = −𝛽𝛽𝜑𝜑 =
−1

(𝑆𝑆 − 1)𝜇𝜇𝑒𝑒−1
 ,      𝜇𝜇(𝜃𝜃) = (�−𝜃𝜃(𝑆𝑆 − 1)�

− 1
𝑒𝑒−1 ,      𝑏𝑏(𝜃𝜃) = 𝜆𝜆𝜑𝜑 =

𝜇𝜇2−𝑒𝑒

2 − 𝑆𝑆
   

where 𝑐𝑐(𝑙𝑙,𝜑𝜑) is defined as the logarithm of the sum in the first equation above. This sum 
depends on 𝜇𝜇 and 𝜃𝜃 only through the product 𝜆𝜆𝛽𝛽𝑑𝑑, which is a function of ϕ only, and therefore 
depends on y and ϕ, but not on 𝜃𝜃 (Dina and Nelken, 2014). 

After performing the preliminary explorations, the project team selected the variables of interest 
suitable for the daily level analysis. For example, instead of using the five speed measures used 
for the segment-level analysis, the current model development applied two speed measures 
(average daily speed, or SpdAvgDaily, and standard deviation of daily speed, or SDDailySpd) 
that better convey the daily level analysis. Due to the highly random nature of PDO crashes, the 
current analysis was limited to KABCO and KABC crashes for Ohio and Washington separately. 
Since the daily precipitation patterns vary widely between these two States, the two-state model 
was not developed for the daily level analysis.  

Models Developed for Interstate Roadways 

Table 19 lists the model outputs of rural interstate roadways. Appendix D includes all individual 
models.  

Table 19. Model Estimation Results of Daily Crash Frequencies at Segments 
(Rural Interstate). 

Variables Ohio Washington 
KABCO KABC KABCO KABC 

Traffic volume (AADT)  0.7126 1.0987 0.6470 0.4614 
Segment length (Len) 0.2328 0.2256 0.1930 0.2550 
Number of lanes (Lanes) — −0.0529 — — 
Lane width (LW) — 0.5191 — — 
Percentage of precipitation 
(PPrep) 

0.2352 0.3090 0.2080 — 

Number of curvatures (NCurv) −0.6125 — — — 
Total length of curvatures 
(LCurv) 

— — — — 

Standard deviation of daily 
average speed (SDDailySpd) 

0.1376 0.3011 0.3520 0.3455 

Daily average speed 
(SpdAvgDaily) 

−0.0405 −0.0328 — — 

Intercept  −9.4829 −15.7714 −11.8000 −11.4046 
Note: A dash (—) = not significant at the 95% level.  
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The explanations of the model outcomes are provided below. 

Segment length and traffic volume: Both segment length and traffic volume are positively 
associated with daily level crashes on the roadway segments. These two variables are statistically 
significant for all models.  

Lane width: This variable represents the lane width of a roadway surface. This variable is not 
statistically significant for most of the models (exception: the KABC crash model for Ohio). 

Number of lanes: This variable represents the number of lanes in each direction. This variable is 
not statistically significant for most of the models (exception: the KABC crash model for Ohio). 

Percentage of days with precipitation: This variable represents the percent of days with some 
level of precipitation. The coefficient is positive and significant in most of the models. This 
finding is intuitive since it shows that segments with more precipitation tend to have more 
crashes than segments with less precipitation.  

Number and length of horizontal curves: These two variables show the presence of horizontal 
curves. Both variables are not statistically significant in most of the models. For the KABCO 
crash model in Ohio, the coefficient of the number of horizontal curvatures is negative and 
statistically significant. This finding is counterintuitive because it indicates that the segments 
with more horizontal curvatures tend to have fewer crashes, which could be due to correlation 
with other unknown factors, curve-related crash reporting issues, or missing values related to 
curve information in the Ohio HSIS data. It is also important to note that Ohio roadways with 
curves show comparatively lower in proportion than Washington. 

Daily average speed: This variable represents average speed per day on each of the segments. 
The coefficient is negative in the models developed for Ohio, which means that with the increase 
in daily average speeds, the crashes decrease. Generally, well-designed and high-standard roads 
are associated with higher speeds. 

Standard deviation of daily average speed: This variable represents the operating speed 
variation among the hours of a day. The coefficient is positive and significant for all cases. The 
positive coefficient shows that a segment with high variation in daily average speeds 
(i.e., >1 mph) is expected to experience a higher number of crashes than a segment with a lower 
variation in daily speeds.  

Models Developed for Two-Lane Roadways 

Table 20 lists the model outputs of rural two-lane roadways. Appendix D includes all individual 
models.  
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Table 20. Model Estimation Results of Daily Crash Frequencies at Segments 
(Rural Two-Lane). 

Variables Ohio Washington 
KABCO KABC KABCO KABC 

Traffic volume (AADT)  0.2610 0.7720 0.7531 0.8316 
Segment length (Len) 0.0092 0.2320 0.1609 0.1448 
Number of lanes (Lanes) NA NA NA NA 
Lane width (LW) — — −0.0203 −0.0598 
Percentage of precipitation (PPrep) — — 0.1688 — 
Number of curvatures (NCurv) — — −0.0048 — 
Total length of curvatures (LCurv) — — 0.1748 — 
Standard deviation of daily 
average speed (SDDailySpd) 0.0062 0.0954 0.0490 0.0770 

Daily average speed 
(SpdAvgDaily) 0.0312 — — — 

Intercept  0.5638 −14.2000 −11.8408 −13.1203 
Note: A dash (—) = not significant at the 95% level; NA = not applicable.  
 
The explanations of the model outcomes are provided below. 

Segment length and traffic volume: Both segment length and traffic volume are positively 
associated with daily level crashes on the roadway segments. These two variables are statistically 
significant for all models.  

Lane width: This variable represents the lane width of a roadway surface. This variable is not 
statistically significant for Ohio models but is significant for Washington models. For 
Washington models, the coefficient is negative, which is intuitive.  

Percentage of days with precipitation: This variable represents the percent of days with some 
level of precipitation. The coefficient is positive and significant only for the Washington KABC 
crash model. This finding is intuitive because it shows that segments with more precipitation 
tend to have more crashes than other segments with less precipitation.  

Number and length of horizontal curves: These two variables show the presence of horizontal 
curves. Both of these variables are not statistically significant in most of the models. For the 
KABCO crash model in Washington (although the number of curves has a negative coefficient), 
the coefficient of the length of horizontal curvatures is positive and statistically significant. This 
finding is intuitive because it indicates that the segments with more horizontal curvatures tend to 
have more crashes.  

Daily average speed: This variable represents average speed per day on each of the segments. 
The coefficient is positive and statistically significant for the Ohio KABCO crash model. This 
result is intuitive for two-lane roads because crash frequencies may increase due to the higher 
average speed due to the presence of higher hazard warnings (e.g., limited sight distance). 

Standard deviation of daily average speed: This variable represents the operating speed 
variation among the hours of a day. The coefficient is positive and significant for all cases. The 
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positive coefficient shows that a segment with high variation in daily average speeds 
(i.e., >1 mph) is expected to experience a higher number of crashes than a segment with a lower 
variation in daily speeds.  

Models Developed for Multilane Roadways 

Table 21 lists the model outputs of rural multilane roadways. Appendix D includes all individual 
models.  

Table 21. Model Estimation Results of Daily Crash Frequencies at Segments 
(Rural Multilane). 

Variables Ohio Washington 
KABCO KABC KABCO KABC 

Traffic volume (AADT)  0.7413 0.7784 0.9219 0.8258 
Segment length (Len) 0.2511 0.2259 0.1939 0.2097 
Number of lanes (Lanes) — — — — 
Lane width (LW) — — 0.0260 0.0268 
Percentage of precipitation 
(PPrep) — — — — 

Number of curvatures (NCurv) 0.0948 0.1038 — — 
Total length of curvatures 
(LCurv) — — 0.1804 — 

Standard deviation of daily 
average speed (SDDailySpd) 0.0806 0.1414 — 0.0694 

Daily average speed 
(SpdAvgDaily) — — — — 

Intercept  −13.1536 −16.1712 −13.8323 −15.6685 
Note: A dash (—) = not significant at the 95% level.  
 
The explanations of the model outcomes are provided below. 

Segment length and traffic volume: Both segment length and traffic volume are positively 
associated with daily level crashes on the roadway segments, which aligns with existing highway 
safety literature. These two variables are statistically significant for all models. 

Lane width: This variable represents the lane width of a roadway surface. This variable is only 
statistically significant (positive coefficient) for Washington models.  

Number of lanes: This variable represents the number of lanes in each direction. This variable is 
not statistically significant for any of the models.  

Percentage of days with precipitation: This variable represents the percent of days with some 
level of precipitation. The coefficient is not statistically significant in any of the models. 

Number and length of horizontal curves: These two variables show the presence of horizontal 
curves. The number of curvatures is positive and statistically significant for both Ohio models. 
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The total length of curvature is positive and statistically significant for the KABCO crash model 
in Washington.  

Daily average speed: This variable represents average speed per day on each of the segments. 
The coefficient is not statistically significant in any of the developed models.  

Standard deviation of daily average speed: This variable represents the operating speed 
variation among the hours of a day. The coefficient is positive and significant in most of the 
cases. The positive coefficient shows that a segment with high variation in daily average speeds 
(i.e., >1 mph) is expected to experience a higher number of crashes than a segment with a lower 
variation in daily speeds.  

The overall findings from the daily segment-level analyses were as follows: 

• This study developed a speed measure that could capture traffic speed variation throughout 
the day by measuring the standard deviation of daily average speed. The coefficient was 
positive and significant in all models, which signifies that a segment with high variation in 
daily average speeds is expected to experience a higher number of crashes than a segment 
with a lower variation in daily speeds. The strength of this finding is one of the biggest 
insights gained from this study.  

• Average operating speed was positively associated with crashes for rural two-lane roadways. 
However, average operating speed was negatively associated with crashes in the interstate 
models. This finding for interstates could be because well-designed and high-standard roads 
are generally associated with higher average operating speeds. 

• Daily average precipitation was positively associated with the number of daily crashes. For 
the segment-level analysis, the effect of precipitation was mostly insignificant or negative. 
The finding at the daily level of analysis indicates that precipitation is positively associated 
with daily crash frequencies.  

• Because the geometric variable remained constant for the segment while developing the 
model at the segment-temporal level, additional insights are needed for the model 
interpretation. A need exists for further examination of the spatial effects of the geometric 
variables with the use of advanced modeling techniques.  

EXPLORATORY EXAMINATION OF TIME BEFORE AND AFTER CRASHES 

Dataset structure 3 was designed to answer the second research question (is there more 
variability in speeds just prior to a crash?), and to enable the examination of traffic speeds before 
and after crashes. Dataset structure 3 uses speed as a surrogate form of the response variable 
rather than the crash frequency because the research question is focused on identifying speed 
patterns that would signal an imminent crash. 

Appendix E provides the data integration steps for this data structure. This dataset structure 
considers whether a crash occurred within the given time period (i.e., the value is either 0 or 1 
for that variable). It considers the consecutive epochs before a recorded crash. To construct the 
dataset for analysis, all epochs with crash incidents were identified in the spatiotemporal dataset 
(dataset structure 2). All epochs within 4 hours of the incidents were also identified and labeled 
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accordingly in a new field named “epoch type.” The coding of these incident-related epochs was 
as follows: 

• BI: An epoch 4 hours or less before an incident (crash) occurred. 
• DI: An epoch when an incident occurred. 
• AI: An epoch 4 hours or less after an incident occurred. 

The project team also developed a companion dataset (control group) of reference sets of epochs 
to be utilized in the analysis. All the epochs of these reference sets were labeled as follows: 

• BR: A reference set to BI epochs. 
• DR: A reference set to DI epochs. 
• AR: A reference set to AI epochs. 

In addition to the epoch type field, a field with relative epochs was added to indicate separation 
from the incident epoch. For example, a value of −2 indicates a BI or BR epoch that is two 
15-minute periods prior to the incident at the corresponding DI or DR epoch. Similarly, a value 
of +3 indicates an AI or AR epoch that is three 15-minute periods after the incident at the 
corresponding DI or DR epoch. 

Functional Form of Mixed-Effects Model 

Several models that were suitable for this analysis were considered. The project team found that 
mixed-effect (ME) modeling would better address the research question. A short overview of the 
ME modeling is provided below.  

By analyzing the impact of variables that vary over time, fixed-effect (FE) models successfully 
frame the predictor and outcome variables’ relationship within an entity. This entity, with its own 
individual characteristics, might influence the predictor variables. The assumption of an entity’s 
error term and predictors’ correlations in an FE model removes the effect of time-invariant 
features and facilitates measurement of the net effect of the predictors used in the model on the 
outcome variable. Also, the threat of omitted variable bias is significantly reduced using these 
models since all time-invariant differences in observables and non-observables are controlled.  

The equation for an FE model is: 

𝑌𝑌𝑖𝑖𝑡𝑡 = 𝛽𝛽1𝑋𝑋𝑖𝑖𝑡𝑡 + 𝛼𝛼𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑡𝑡   (10) 

where:  

αi (i = 1,…..n) = unknown intercept for each entity. 
Yit = dependent variable, where i = entity and t = time. 
Xit = one independent variable. 
βit = coefficient for that independent variable. 
uit = error term. 

Unlike the FE model, a random-effects (RE) model assumes the variation across different entities 
(epochs) to be random and uncorrelated with the independent variables used in the model. The 
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RE model permits generalization of inferences outside the sample epochs used in the model. In 
addition, this model consists of time-invariant variables such as the number of lanes, AADT, 
median width, shoulder width, and speed limit. This method differs from the FE model, in which 
all of the time-invariant variables are absorbed by the intercept of the model. 

𝑌𝑌𝑖𝑖𝑡𝑡 = 𝛽𝛽1𝑋𝑋𝑖𝑖𝑡𝑡 + 𝛼𝛼𝑖𝑖 + 𝑢𝑢𝑖𝑖𝑡𝑡 + ∈𝑖𝑖𝑡𝑡   (11) 

where:  

uit = between-entity error. 
∈it = within-entity error. 

An entity’s error term in RE is assumed to not be correlated with the predictor variables used in 
the model, which allows the time-constant variables mentioned above to act as explanatory 
variables. An easy interpretation of the above effects can be that fixed effects do not change 
across individual entities, whereas the random effects do vary, so it is essential to account for 
both of these effects in order to identify a relationship between the response and predictor 
variables irrespective of the population sample being used in the model.  

When an ME model is applied in the analysis, it accounts for both fixed effects (by including 
explanatory factors) and random effects (by including exogenous sources of variability). 
Generally, the modeling structure for MEs accounts for the following types of data 
characteristics: 

𝑌𝑌𝑖𝑖 = 𝑋𝑋𝑖𝑖𝛽𝛽 + 𝑍𝑍𝑖𝑖𝑏𝑏𝑖𝑖 +∈𝑖𝑖  (12) 

For i = 1,……n where: 

Yi = ith subject’s response vector. 
Xi = fixed-effects design matrix, i.e., (ni x p) matrix of covariates. 
β = fixed-effects vector, i.e., (p x 1). 
Zi = random-effects design matrix, i.e., (ni x q) matrix of covariates. 
bi = random-effects vector, i.e., (q x 1).  
∈i = error vector. 
Xi = Zi x Ai, where Zi contains only within-subject factors and Ai contains only between-
subject factors.  

This model assumes that:  

𝑌𝑌𝑖𝑖~𝑁𝑁(𝑋𝑋𝑖𝑖𝛽𝛽,∑𝑖𝑖)  (13) 

where: 

Σ𝑖𝑖 = 𝑍𝑍𝑖𝑖 ∑𝑍𝑍𝑖𝑖′ +  𝜎𝜎2Ι 𝑀𝑀  is the mi x mi covariance matrix for the ith subject’s data. 

Another assumption for an ME model is: 

𝐶𝐶𝑀𝑀𝐴𝐴[𝑌𝑌ℎ,𝑌𝑌𝑖𝑖] = 0𝑚𝑚ℎ 𝑥𝑥 𝑚𝑚𝑖𝑖  𝑖𝑖𝑆𝑆 ℎ ≠ 𝑖𝑖  (14) 
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By using an ME model, individual change across time can be modeled explicitly, and since it is 
more flexible in terms of repeated measures, the same number of observations per subject are not 
required. An ME model allows correlation of errors, unlike GLM, and therefore possesses more 
flexibility when modeling the error covariance structure. Better handling of the missing data and 
allowance of non-constant variability of error terms is also achieved in the ME model. These 
characteristics of the model convinced the project team to utilize an ME approach for data 
analysis.  

Model Development 

The analysis on data structure 3 was exploratory in nature. Space mean speed (SMS)5 series for a 
sample of 150 crashes were selected at random from the Washington interstate/freeway dataset. 
Along with those series, a set of up to 10 reference series per crash series was selected—also 
picked at random, but within a month of the crash series, as explained previously. This sample 
resulted in a set of 16,207 epochs, including 150 SMS crash series and 1,073 reference SMS 
series. 

Initially, a robust set of variables was examined as potential covariates in the model. After 
stepwise model selection, the project team determined the most significant predictors. The 
general conclusions were: 

• Speed limit, AADT, number of lanes, and median width relate to the general trend of SMS at 
freeway sites (specific trends are comingled and need a sensitivity analysis for 
interpretation). 

• After controlling for other influential factors, the team found that the trend for SMS before 
BI tended to be lower than the SMS trend for comparable reference epochs (i.e., BR; lower 
by as much as 2.89 mph just before the incident). 

• After controlling for other influential factors, the team found that the difference in trends for 
SMS BI and BR was wider immediately before the crash in comparison to earlier epochs. 
The difference was estimated at –0.49 mph (–2.887 – 0.15 * [–16]) 4 hours prior to the 
incident but enlarging to 2.89 mph just before the incident. 

• The variance of the SMS was found to be larger for the series leading to a crash (i.e., BI) than 
for the series not leading to a crash (BR). The team estimated that the variance of the BI 
series was about 20 percent larger than the variance of the reference series BR after 
accounting for other factors. 

The project team anticipated that these precursor differences in operations could be used to 
construct a procedure to identify an SMS series that could be leading to crashes before the 
crashes occur. However, a validation effort was necessary using the rest of the conflated data. 
Before proceeding to the validation phase, the project team tested additional specifications for 
the differences in variance between the BI and BR series. In the last iteration, the model was 
fitted so that heteroscedasticities (sub-populations having different variabilities from others) 
were allowed for BR and BI, with the result being that [V(SMS)BI] / [V(SMS)BR] = 1.2003.  

                                                 
5 Time mean speed (TMS) is the average speed measure of all vehicles passing a point over a period. Space mean 

speed (SMS) averages the spot speed with spatial weightage instead of temporal.  
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In a new iteration, different independent heteroscedasticity functions were allowed for each time 
series, resulting in an improved overall fit with respect to the homoscedastic model. The project 
team tested different time-sequential epoch thresholds for the heteroscedasticity model (starting 
1 hour prior, 2 hours prior, or 4 hours prior to the crash). The best fit was found when the 
threshold was set at 4 hours prior to the crash incident (p-value < 0.0001 for 138.51 chi-squared 
statistics on 1 degree of freedom from a log-likelihood ratio test between the two 
heteroscedasticities model and the two homoscedasticities model). 

All other coefficients remained essentially unchanged, but the increased variance for the BI 
series became more pronounced in this model, as can be seen in figure 17.  

 
Figure 17. Variance of BI Series.  

The reference variance is 4 hours prior to the epoch of the crash (i.e., relative epoch equals –16). 
Figure 17 shows that the BR and BI variances are essentially the same 4 hours prior to the crash. 
The variance for BI increases rapidly by an increasing factor up to 2.76 just prior to the crash, 
while the BR variance remains essentially unchanged. Table 22 lists the model coefficients.  



 

54 

Table 22. Model Coefficients (Dataset Structure 3 for Washington Interstate Roadways). 

Design and Traffic Factors Value 
Std. 

Error DF t-value p-value 
MEDWID −0.00547 0.00171 143 −3.21049 0.0010 
SPD_LIMT −3.4747 2.28453 143 −1.52097 0.1305 
log(AADT) −23.2193 14.59288 143 −1.59114 0.1138 
I(NO_LANES - 4) −25.7943 7.5424 143 −3.41991 0.0008 
SPD_LIMT:log(AADT) 0.34973 0.20675 143 1.691536 0.0929 
I(NO_LANES - 4):log(AADT) 2.38218 0.70928 143 3.358591 0.0010 

Estimates for Difference between Series 

  Value 
Std. 

Error DF t-value p-value 
BI −2.74453 0.51717 1072 −5.30681 <0.0001 
DR −0.03469 0.17992 14836 −0.19279 0.8471 
Residual Trend by Relative Epoch for BR −0.00487 0.01799 14836 −0.27073 0.7866 
Residual Trend by Relative Epoch for BR −0.1358 0.0392 14836 −3.46419 0.0005 
Scedasticity Model Estimate     
(Variance for BI_[t])/(Variance for BI_[t-1]) 1.06037     
(Variance for BR_[t])/(Variance for BR_[t-
1]) 1.00989     
Error Covariance Structure: AR(2) Estimate     
Phi 1 0.34770     
Phi 2 0.13764     

 
Validation 

The project team repeated the model calibration on a similarly selected but non-overlapping 
random sample of 200 crash events and reference speed series to verify that the coefficient 
estimates were stable. Similar to naturally expected fluctuation in the coefficients, their 
magnitudes and directions were confirmed to be essentially unchanged. The next step in the 
analysis was the development of a procedure to analyze the new speed series and assess if they 
were likely to result in crashes. It was hypothesized that the following trend signatures from the 
analysis could help differentiate the crash-associated series (BI) from the non-crash series (BR). 

• The trend for SMS BI tended to decrease linearly from the SMS trend for comparable 
reference epochs (i.e., BR). In other words, the difference in trends for SMS BI and BR was 
wider immediately before the crash in comparison to earlier epochs. The difference was 
estimated at –0.54 mph (–2.7445 – 0.1358 * [–16]) 4 hours prior to the incident but enlarging 
to 2.7445 mph just before the incident. 

• The variance of the SMS was found to be larger for the series leading to a crash (i.e., BI) than 
for the series not leading to a crash (i.e., BR). It was estimated that the variance of the BI 
series at an epoch T was about 6 percent larger than the variance of the prior epoch in the 
same series (T-1), after accounting for other factors. In contrast, the variance for the BR 
series was found constant, on average, for all epochs. 
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Scoring Methodology 

To implement the findings from the modeling into a practical methodology that uses new data 
(i.e., data not used to fit the models), the project team developed a scoring procedure to quickly 
assess how a new time series shows the features pointed out above. To obtain a score for the new 
series, the project team prepared an algorithm to implement the following steps: 

1. Extract a family of series from data structure 3 and fit a polynomial trend (fixed at the 
second order). This order is the same order of the polynomial used in the random effects 
of the ME model to allow for simple curvatures in the series trend. 

2. Fit a differential linear model for each series in the family (i.e., having as the response the 
difference between the family trend and the individual series observed values). This 
differential model is such that it imposes the trend signatures listed above as three model 
features: (a) an intercept shifted negatively by 2.7445 mph; (b) a negative linear slope of 
–0.1358 mph / [15 minutes]; and (c) a positive heteroscedasticity with a linear envelope 
with a slope of 1.06037. 

3. Apply four hypothesis tests to each differential model and obtain the corresponding 
p-value. The test is such that the alternative hypotheses state that the three signature 
adjustments above are incorrect. Thus, a large p-value indicates a lack of evidence 
against the trend signatures. 

4. Obtain a preliminary score for the series simply by multiplying the three p-values. 
5. Adjust the preliminary score to penalize the series that have narrower variances relative 

to the family of series. 

The scoring procedure above yields a numeric assessment of the agreement of each series with 
the findings in the model. However, there are two important but unknown pieces of information: 

• In the above methodology, each of the four components of the score is weighted equally. It is 
likely that there exists a set of weights that would improve the power of the methodology to 
filter crash-prone series from non-crash series. 

• For a given set of weights, it is unclear what threshold to recommend to separate crash-prone 
series from non-crash series. 

The project team developed an experiment to provide answers to the above questions. A sample 
of 50 randomly selected sets of series such that only series that were not used in the model 
development were selected (386 series in total, including 336 BR and 50 BI series). Algorithms 
were developed to execute the scoring procedure described earlier but by applying a set of fixed 
weights to the four components. Each set of weights was defined as a scheme. For each scheme, 
scores were obtained for all speed series, and two graphic assessment outputs were developed: 
(a) a kernel-density plot for the score distribution by either BI or BR; and (b) calculations for 
four measures of effectiveness (MOEs) at a range of thresholds for the scores—true positives, 
false negatives, proportion of missed crashes, and total number of positives produced. Since the 
score density profiles for both types of series look similar, it is expected that this scheme has a 
limited power in differentiating crashes from non-crashes. Such expectation is confirmed in 
figure 18, which shows four MOEs. 
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Figure 18. MOEs of Scheme 1. 

Figure 18 shows that the proportion of true positives is roughly constant at about 15 percent, and 
the proportion of false negatives is also essentially constant at a similar level regardless of the 
threshold picked. The proportion of missed crashes increases with an increasing threshold, from 
about 20 percent at a threshold of 0.01 to about 93 percent at a threshold of 0.5. However, the 
number of positives is very large for small thresholds, and it begins to become manageable (i.e., 
about 50 positives) at thresholds larger than or equal to 0.35. The project team ran the analysis 
for 20 different schemes, manually adjusting individual weights in the direction that appeared to 
improve the performance of the classification score. 

As mentioned earlier, the attempts to analyze data structure 3 were exploratory in nature. The 
general findings were as follows: 

• After controlling for other influential factors, as the moment of crash occurrence approached, 
the speed trend for the crash-related series decreased and was substantially different than the 
trend of the non-crash-related reference series. 

• Speed variability increased for the series just prior to a crash, which was also different than 
the no-crash series. 
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CHAPTER 4. DECISION SUPPORT TOOL 

Based on the results from the statistical runs, the project team developed a prototype decision 
support tool that uses the statistical modeling results and converts them into a visual and 
geospatial environment that identifies higher-risk highway segments. This tool is based on the 
historical data from NPMRDS and HSIS and, if feasible, will expand to include the effects that 
NPMRDS speed data on a given segment over time have on a given highway segment’s risk 
profile. The project team developed two separate data visualization tools: 

• Interactive decision support tool. 
• Interactive data visualization tool. 

INTERACTIVE DECISION SUPPORT TOOL 

The project team developed a beta version of the interactive web-based decision support tool for 
Washington and Ohio rural NHS roadways (Interactive Decision Support Tool, 2018). The tool 
was developed through R Shiny, which converts statistical modeling results from segment-level 
analysis into a visual/geospatial representation of higher-risk highway segments based on 
roadway design, traffic volumes, and speed data. Figure 19 illustrates the interface of the 
proposed interactive tool. The features of the interactive tool are the following: 

• The tool contains a dashboard with various drop-down lists of steps to evaluate risk scoring 
at the segment level (direction specific). Users have the flexibility of selecting several 
options. The beta version has the following drop-down and selection options (see figure 19): 

o Year: 2015. 
o State: WA and OH. 
o County: Counties in Each State. 
o Facility Type: 
 Rural Interstate. 
 Rural Two-Lane. 
 Rural Multilane.  

o Severity: All and FI. 
• After selecting the options, the user needs to click the “Refresh Map” button to generate the 

interactive map. For example, by selecting “Year: 2015; State: WA; County: All Counties; 
Facility: All; Severity: All,” a heatmap based on number of crashes will be generated (see 
figure 20). The map can also be seen at other smaller spatial units. For example, selection of 
“Year: 2015; State: WA; County: Whitman County; Facility: All; Severity: All” will allow 
the user to develop the map and associated data at the county level (see figure 20). Selection 
of “Year: 2015, State: WA; County: Whitman County; Facility: Multi. Undiv.; Severity: All” 
will allow the user to develop the map and associated data at the facility level of a county 
(see figure 21). 

• The interactive map has a hovering option. Users can see associated data on a segment by 
dragging the mouse to that segment (see figure 22). 

The current risk rankings are based on the high number of total and FI crashes.  
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Figure 19. Selection at State Level (Expected Total Crashes at Segments). 

 
Figure 20. Selection at County Level (Expected Total Crashes at Segment Level). 
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Figure 21. Selection at Facility Level. 

 
Figure 22. Hovering Option. 
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Feasibility of Applying Real-Time NPMRDS Data 

The current decision support tool is based on 2015 HSIS and NPMRDS data. The tool can be 
applied to county-level analysis for determining the rural NHS risky segments. It has the 
functionality of providing expected crashes for different segments (with associated geometric, 
demographic, and speed measures on the segment in tabular form) based on the user’s selection 
criteria. The current beta version of the tool does not support real-time integration of NPMRDS 
data. Additionally, it is limited to segment-level risk analysis. However, it can be scalable to 
segment-temporal-level speed data integration. 

INTERACTIVE DATA VISUALIZATION TOOL 

Data visualization merits careful consideration for many reasons. One of the prime objectives of 
this task is to use the most fitting and efficient tools to enhance the understanding of the data 
presented by creating a clear visual narrative and thinking beyond charts. The project team 
envisions embracing new visualization techniques that will ensure approachable and accurate 
interpretations of the association between operational speed, speed differentials, traffic volume, 
roadway geometry, and crash outcomes.  

Appendix F provides the interface of the tool and associated link. The clickable links provide a 
more detailed view of the speed measures and descriptive statistics, as well as visualization of 
the association between speed measures and crashes at the granular level. The current version 
contains analysis at the functional class level. The project team used open-source R data 
visualization packages (ggplot2, lattice, and htmlwidgets in R) to prepare both static and 
interactive data visualization plots and tools (Wickham, 2016; Deepayan, 2008; htmlwidgets, 
2018). The project team also envisions enhancing the accessibility of data in HTML tables. The 
project team developed the subset of datasets (based on different dominant clusters) for 
interactive table viewing. An easily accessible data table helps end-users obtain the necessary 
information from the table as quickly as possible (Washington data [DV, 2018]). Researchers 
used DataTables (see table 23), a plug-in for the jQuery JavaScript library (DT, 2018).  

Table 23. Example of Data Table View.  
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Example (Interactive GIS Maps)  

Figure 23 illustrates the heatmap of the rural NHS crashes (from 2015) in Washington. This 
interactive plot was created by using mapbox.js. Figure 24 shows the interactive property of 
figure 23. The user can zoom in and out by clicking on the corresponding circles present in the 
plot.  

 
Figure 23. Heatmap of the Rural NHS Crashes in Washington Using Mapbox.js. 

 
Figure 24. Interactive View of the Plot. 
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Example (Dygraphs)  

Static plots are not suitable for showing the travel time or speed data through the year for all 
epochs. The project team developed dygraphs, an open-source JavaScript charting library, for the 
segments with a high number of crashes on different facility types. Figure 25 shows the 
interactive dygraphs developed for the top two segments with a high number of crashes using 
Washington conflated data. It shows the pattern of operational speed during the occurrences of 
crashes. These plots have the following advantages and functionalities: 

• Can handle large datasets like NPMRDS travel time data without getting bogged down. 
• Have interactivity out of the box, including zoom, pan, range selection (see figure 26), and 

mouseover, which are on by default. 

 
Figure 25. Association between Crash and Operational Speeds on Two Interstate 

Roadways in Washington.  
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Figure 26. Range Selection Options in Dygraphs.  
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CHAPTER 5. CONCLUSIONS 

This study aimed to determine the association between vehicle operating speed, roadway 
geometry, traffic volume, and crash occurrences. The project team developed conflated databases 
for the States of Washington and Ohio by incorporating HSIS and NPMRDS data. The data were 
then analyzed using three units of analysis (see figure 27): 

• Segment level for annual-level crash predictions. 
• Segment-temporal level for daily-level crash predictions.  
• Segment-temporal level at time before and after crashes.  
 

 

Figure 27. Overall Framework of Analysis. 

FINDINGS FROM ANNUAL-LEVEL CRASH PREDICTION MODELING 

Segment-level crash models based on the conflated dataset can provide reliable estimates of 
yearly crash frequencies. The general findings were: 

• Certain speed measures were useful in the development of the annual-level statistical models. 
This study examined aggregated traffic travel speed variation over time.6 

o Increased variability in hourly operating speeds within a day and increased monthly 
operating speeds within a year were both associated with increased crashes.  

o Multilane, non-freeway roads with higher free-flow speeds tended to experience a 
higher rate of crashes than those with lower free-flow speeds. However, this effect 

                                                 
6 The current study did not examine the speed variability between the vehicles because NPMRDS provides 

aggregated speed measures.  
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was negative for interstate roadways, likely due to their more robust highway design 
standards.  

o Operational speed differences between weekends and weekdays were positively 
associated with a higher number of crashes. Segments experiencing higher speed 
differentials between weekends and weekdays likely indicate the nature of roadway-
use and land-use patterns.  

o Non-peak and non-event speed (average operating speed excluding peak hours and 
hours with events) was positively associated with crash rates on rural two-lane 
roadways. However, this speed measure was negatively associated with crashes in the 
interstate model. This finding for interstates could be because well-designed and 
high-standard roads are generally associated with higher non-peak and non-event 
speeds. 

• As the proportion of horizontal curvature on a segment increased, the number of crashes also 
increased. 

• In general, segments with intersections tended to have more crashes than segments without 
intersections, which is likely because segments with intersections have a greater number of 
conflict points. The variable was only significant for multilane roadways.  

FINDINGS FROM DAILY-LEVEL CRASH PREDICTION MODELING 

Daily-level crash predictions models based on the conflated dataset provided reliable estimates 
of daily crash frequencies. The general findings were: 

• A variable was created to capture traffic speed variation throughout the day by measuring the 
standard deviation of daily average speed. The coefficient was positive and significant in all 
models, which signifies that a segment with high variation in daily average speeds is 
expected to experience a higher number of crashes than a segment with a lower variation in 
daily speeds. The strength of this finding is one of the biggest insights gained from this study.  

• Average operating speed was positively associated with crashes for rural two-lane roadways. 
However, average operating speed was negatively associated with crashes in the interstate 
models. This finding for interstates could be because well-designed and high-standard roads 
are generally associated with higher average operating speeds. 

• Daily average precipitation was positively associated with the number of daily crashes. 
• Because the geometric variable remained constant at the segment while developing the model 

at the segment-temporal level, additional insights are needed for the model interpretation.  

FINDINGS FROM EXPLORATORY EXAMINATION OF TIME BEFORE AND AFTER 
CRASHES 

This analysis examined the time around crash events to investigate if any significant differences 
exist between speed series for 4 hours prior to a crash and comparable 4-hour series when no 
crash occurred (no crash but the same day of the week and hour on a different date). An ME 
model was fitted to investigate these differences. The analysis was limited to a randomly selected 
sample dataset (with 150 crashes from Washington interstate roadways). The overall outcome of 
this analysis was exploratory in nature. The findings were: 
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• After controlling for other influential factors, as the moment of crash occurrence approached, 
the speed trend for the crash-related series decreased and was substantially different than the 
trend of the non-crash-related reference series. 

• Speed variability increased for the series just prior to a crash, which was also different than 
the non-crash series. 

The overall finding from this study is that speed-related operational information is an area of 
opportunity to better understand safety outcomes. Several of the speed measures show positive 
association with crash outcomes at the segment level (annual or daily). Future replications with 
different datasets and facility types (for example, urban roadways) are needed to explore the 
association between operation speed measures, geometric factors, and crash outcomes. 

DECISION SUPPORT TOOL 

The project team developed an interactive decision support tool to show segment-level high-risk 
analysis using Washington and Ohio data that contain expected total crashes from the final 
models. The tool will have adaptability options for newer datasets (crash and speed data). 
Additionally, the project team developed time series models to forecast speed measures at 
different temporal units (hour or day) to scale the analysis in the presence of crash data only. The 
project team also provides recommendations on the integration of the updated NPMRDS data in 
the tool.  

The project team developed a weblink that includes descriptive statistics and data visualization 
(both static and interactive) tools. The link provides a more detailed view of the speed measures 
and descriptive statistics, as well as visualization of the association between speed measures and 
crashes at a granular level. The descriptive statistics and data visualization tools from this 
weblink can provide new research and safety improvement opportunities. 
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APPENDIX A. SAFETY PERFORMANCE FUNCTIONS: BASICS 

SAFETY PERFORMANCE FUNCTIONS BY FACILITY TYPES 

The project team developed SPFs for different facility types. The major contribution of this task 
is to incorporate speed measures and effect of precipitation in SPF development.  

An SPF is an equation used to predict the average number of crashes per year at a location as a 
function of exposure and speed measures. For highway segments, exposure is represented by the 
segment length and AADT associated with the study section, as shown by the following baseline 
SPF: 

𝐶𝐶𝑃𝑃𝑠𝑠𝑒𝑒𝑑𝑑𝑖𝑖𝑒𝑒𝑡𝑡𝑒𝑒𝑑𝑑 = exp [𝛽𝛽0 + 𝛽𝛽1 × ln(𝐿𝐿) + 𝛽𝛽2 × ln(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) + ∑𝛽𝛽𝑗𝑗 × 𝑋𝑋𝑗𝑗 ]                           (15) 

where: 

CPredicted = the predicted crash frequency. 
Β0 = intercept. 
Β1,β2 = coefficients for segment length and traffic volume, respectively. 
L = segment length. 
AADT = annual average daily traffic. 
Βj = coefficients for other roadway features and speed measurements. 
Xj = other roadway features (e.g., shoulder width, median) and speed measurements. 

The empirical Bayes method is based on a weighted average principle. It uses a weight factor, 𝑤𝑤, 
to combine observed (CObserved) and predicted crash frequencies (CPredicted) to estimate the 
expected crash frequency, 𝐶𝐶𝐸𝐸𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑑𝑑: 

𝐶𝐶𝐸𝐸𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑑𝑑 = 𝑤𝑤 × 𝐶𝐶𝑃𝑃𝑠𝑠𝑒𝑒𝑑𝑑𝑖𝑖𝑒𝑒𝑡𝑡𝑒𝑒𝑑𝑑 + (1 − 𝑤𝑤) × 𝐶𝐶𝑂𝑂𝑏𝑏𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑑𝑑   (16) 

where: 

𝑤𝑤 = a weight factor that depends on the overdispersion parameter (OP) = 1
1+𝑇𝑇𝑃𝑃𝑠𝑠𝑒𝑒𝑎𝑎𝑖𝑖𝑐𝑐𝑎𝑎𝑒𝑒𝑎𝑎×𝑂𝑂𝑃𝑃

. 
𝐶𝐶𝐸𝐸𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑑𝑑 = expected crash frequency. 
𝐶𝐶𝑃𝑃𝑠𝑠𝑒𝑒𝑑𝑑𝑖𝑖𝑒𝑒𝑡𝑡𝑒𝑒𝑑𝑑 = predicted crash frequency.  

With the segment length (𝐿𝐿) and the coefficients 𝑘𝑘 and 𝛽𝛽1 from the SPF, OP is calculated by: 

𝑂𝑂𝑂𝑂 = 1/𝜃𝜃 

where: 

𝜃𝜃 = the dispersion parameter of the negative binomial model (i.e., the shape parameter of 
the Gamma distribution). 
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Example 

Assume a rural interstate segment has a length equal to 1.5 mi and AADT equal to 13,000. The 
yearly average operating speed is 74.8 mph. Two crashes occurred on this segment in the past 
year; one was a KABC crash and the other was a PDO crash. 

The following steps summarize the process for performing the calculations to evaluate the 
expected crashes. (Note: for example purposes only; coefficients are not taken from the 
developed models). 

Step 1: Calculate the predicted average crash frequency, 𝐶𝐶𝑃𝑃𝑠𝑠𝑒𝑒𝑑𝑑𝑖𝑖𝑒𝑒𝑡𝑡𝑒𝑒𝑑𝑑. 

Total crashes: 

𝐶𝐶𝑃𝑃𝑠𝑠𝑒𝑒𝑑𝑑𝑖𝑖𝑒𝑒𝑡𝑡𝑒𝑒𝑑𝑑_𝑇𝑇𝑒𝑒𝑡𝑡𝑑𝑑𝑡𝑡 = exp�𝛽𝛽0 + 𝛽𝛽1 × ln(𝐿𝐿) + 𝛽𝛽2 × ln(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) + 𝛽𝛽𝑆𝑆𝑒𝑒𝑑𝑑𝐴𝐴𝑠𝑠𝑒𝑒 × 𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 � 
                  = exp[−6.0 + 0.5 × ln(1.5) + 0.6 × ln(13,000) + 0.007 × 74.8 ] 
                  = 1.51 (𝑐𝑐𝐴𝐴𝐴𝐴𝑐𝑐ℎ𝐴𝐴𝑐𝑐 𝑆𝑆𝐴𝐴𝐴𝐴 𝑙𝑙𝐴𝐴𝐴𝐴𝐴𝐴) 

 

 

 

FI crashes: 

𝐶𝐶𝑃𝑃𝑠𝑠𝑒𝑒𝑑𝑑𝑖𝑖𝑒𝑒𝑡𝑡𝑒𝑒𝑑𝑑_𝑆𝑆𝐼𝐼 = exp�𝛽𝛽0 + 𝛽𝛽1 × ln(𝐿𝐿) + 𝛽𝛽2 × ln(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴) + 𝛽𝛽𝑆𝑆𝑒𝑒𝑑𝑑𝐴𝐴𝑠𝑠𝑒𝑒 × 𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴 � 
                  = exp[−7.0 + 0.5 × ln(1.5) + 0.6 × ln(13,000) + 0.007 × 74.8 ] 
                  = 0.55 (𝐶𝐶𝐼𝐼 𝑐𝑐𝐴𝐴𝐴𝐴𝑐𝑐ℎ𝐴𝐴𝑐𝑐 𝑆𝑆𝐴𝐴𝐴𝐴 𝑙𝑙𝐴𝐴𝐴𝐴𝐴𝐴) 

 

 

 

Step 2: Calculate the OP and weight factor for the segment. 

Total crashes: 

𝑂𝑂𝑂𝑂𝑇𝑇𝑒𝑒𝑡𝑡𝑑𝑑𝑡𝑡 =
1
𝜃𝜃

=
1

5.41
= 0.185 

𝑤𝑤𝑇𝑇𝑒𝑒𝑡𝑡𝑑𝑑𝑡𝑡 =
1

1 + 𝐶𝐶𝑃𝑃𝑠𝑠𝑒𝑒𝑑𝑑𝑖𝑖𝑒𝑒𝑡𝑡𝑒𝑒𝑑𝑑_𝑇𝑇𝑒𝑒𝑡𝑡𝑑𝑑𝑡𝑡 × 𝑂𝑂𝑂𝑂𝑇𝑇𝑒𝑒𝑡𝑡𝑑𝑑𝑡𝑡
=

1
1 + 0.185 × 1.51

= 0.782 

FI crashes: 

𝑂𝑂𝑂𝑂𝑆𝑆𝐼𝐼 =
1
𝜃𝜃

=
1

2.41
= 0.414 

𝑤𝑤𝑆𝑆𝐼𝐼 =
1

1 + 𝐶𝐶𝑃𝑃𝑠𝑠𝑒𝑒𝑑𝑑𝑖𝑖𝑒𝑒𝑡𝑡𝑒𝑒𝑑𝑑_𝑆𝑆𝐼𝐼 × 𝑂𝑂𝑂𝑂𝑆𝑆𝐼𝐼
=

1
1 + 0.414 × 0.55

= 0.814 

Step 3: Calculate the expected crashes, 𝐶𝐶𝐸𝐸𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑑𝑑. 

Total crashes: 

𝐶𝐶𝐸𝐸𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑑𝑑_𝑇𝑇𝑒𝑒𝑡𝑡𝑑𝑑𝑡𝑡 = 𝑤𝑤𝑇𝑇𝑒𝑒𝑡𝑡𝑑𝑑𝑡𝑡 × 𝐶𝐶𝑃𝑃𝑠𝑠𝑒𝑒𝑑𝑑𝑖𝑖𝑒𝑒𝑡𝑡𝑒𝑒𝑑𝑑_𝑇𝑇𝑒𝑒𝑡𝑡𝑑𝑑𝑡𝑡 + (1 − 𝑤𝑤𝑇𝑇𝑒𝑒𝑡𝑡𝑑𝑑𝑡𝑡) × 𝐶𝐶𝑂𝑂𝑏𝑏𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑑𝑑_𝑇𝑇𝑒𝑒𝑡𝑡𝑑𝑑𝑡𝑡 
                           = 0.782 × 1.51 + (1 − 0.782) × 2 
                           = 1.62 crashes/year 



 

73 

FI crashes: 

𝐶𝐶𝐸𝐸𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑡𝑡𝑒𝑒𝑑𝑑_𝑆𝑆𝐼𝐼 = 𝑤𝑤𝑆𝑆𝐼𝐼𝑡𝑡 × 𝐶𝐶𝑃𝑃𝑠𝑠𝑒𝑒𝑑𝑑𝑖𝑖𝑒𝑒𝑡𝑡𝑒𝑒𝑑𝑑_𝑆𝑆𝐼𝐼 + (1 − 𝑤𝑤𝑇𝑇𝑒𝑒𝑡𝑡𝑑𝑑𝑡𝑡) × 𝐶𝐶𝑂𝑂𝑏𝑏𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒𝑑𝑑_𝑆𝑆𝐼𝐼 
                           = 0.814 × 0.55 + (1 − 0.814) × 1 
                           = 0.63 crashes/year 
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APPENDIX B. DEVELOPED MODELS (ANNUAL-LEVEL DATA) 

Table 24. Calibrated Coefficients for KABCO Crashes on Interstates—Two States. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −4.9668 1.0297 −4.82 <.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.7613 0.0743 10.24 <.0001 

𝑏𝑏ℎ𝑒𝑒 Percentage of curve (PerHC) 0.0825 0.0327 2.53 0.0118 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

0.1068 0.0370 2.88 0.0041 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

−0.0378 0.01332 −2.84 0.0047 

𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) — — — — 
𝑏𝑏𝑂𝑂𝑂𝑂  Added effect of Ohio 0.6284 0.07856 8.0 <.0001 

𝑘𝑘 Inverse dispersion parameter for 4-lane segments  −0.4359 0.09577 −4.55 <.0001 
Inverse dispersion parameter for 6-lane segments −0.4672 0.1284 −3.64 0.0003 

Note: A dash (—) = very highly insignificant. 

Table 25. Calibrated Coefficients for KABC Crashes on Interstates—Two States. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −5.8519 1.3414 −4.36 <.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.8221 0.09156 8.98 <.0001 

𝑏𝑏ℎ𝑒𝑒 Percentage of curve (PerHC) 0.08274 0.03688 2.24 0.0253 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

0.07597 0.0475 1.6 0.1103 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

0.1084 0.09142 1.19 0.2361 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

−0.0551 0.01833 −3.01 0.0028 

𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) — — — — 
𝑏𝑏𝑂𝑂𝑂𝑂  Added effect of Ohio 0.4119 0.1021 4.04 <.0001 

𝑘𝑘 Inverse dispersion parameter for 4-lane segments  −0.4875 0.1629 −2.99 0.0029 
Inverse dispersion parameter for 6-lane segments −0.2615 0.2211 −1.18 0.2374 
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Table 26. Calibrated Coefficients for PDO Crashes on Interstates—Two States. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −5.0697 1.0658 −4.76 <.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.7594 0.07803 9.73 <.0001 

𝑏𝑏ℎ𝑒𝑒 Percentage of curve (PerHC) 0.06865 0.03367 2.04 0.0419 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

0.09919 0.03975 2.5 0.0129 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

0.08506 0.06708 1.27 0.2053 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

−0.0406 0.01387 −2.93 0.0035 

𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) — — — — 
𝑏𝑏𝑂𝑂𝑂𝑂  Added effect of Ohio 0.6926 0.08304 8.34 <.0001 

𝑘𝑘 Inverse dispersion parameter for 4-lane segments  −0.4493 0.1013 −4.43 <.0001 
Inverse dispersion parameter for 6-lane segments −0.4972 0.1338 −3.71 0.0002 

Table 27. Calibrated Coefficients for KABCO Crashes on Interstates—Ohio Only. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −3.5814 1.5557 −2.3 0.0219 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.8028 0.1157 6.94 <.0001 

𝑏𝑏ℎ𝑒𝑒 Percentage of curve (PerHC) −0.6258 0.2104 −2.97 0.0031 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

0.0612 0.0585 1.05 0.2963 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

−0.0547 0.01667 −3.28 0.0011 

𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) — — — — 

𝑘𝑘 Inverse dispersion parameter for 4-lane segments  −0.4634 0.1198 −3.87 0.0001 
Inverse dispersion parameter for 6-lane segments −0.7741 0.1602 −4.83 <.0001 
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Table 28. Calibrated Coefficients for KABC Crashes on Interstates—Ohio Only. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −7.7923 2.0571 −3.79 0.0002 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 1.05 0.1526 6.88 <.0001 
𝑏𝑏ℎ𝑒𝑒 Percentage of curve (PerHC) −0.1572 0.5366 −0.29 0.7697 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

0.0893 0.074 1.21 0.2285 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

−0.0549 0.02177 −2.52 0.0121 

𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) — — — — 

𝑘𝑘 Inverse dispersion parameter for 4-lane segments  −0.5888 0.1975 −2.98 0.0031 
Inverse dispersion parameter for 6-lane segments −0.6853 0.2453 −2.79 0.0055 

Table 29. Calibrated Coefficients for PDO Crashes on Interstates—Ohio Only. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −3.1117 1.6184 −1.92 0.0553 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.7611 0.1156 6.59 <.0001 

𝑏𝑏ℎ𝑒𝑒 Percentage of curve (PerHC) −0.7141 0.1793 −3.98 <.0001 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

0.0967 0.0864 1.12 0.2637 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

−0.0578 0.0177 −3.27 0.0012 

𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) — — — — 

𝑘𝑘 Inverse dispersion parameter for 4-lane segments  −0.4935 0.1254 −3.94 0.0001 
Inverse dispersion parameter for 6-lane segments −0.7845 0.1655 −4.74 <.0001 

Table 30. Calibrated Coefficients for KABCO Crashes on Interstates—Washington Only. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −6.2446 0.8187 −7.63 <.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.6358 0.08307 7.65 <.0001 

𝑏𝑏ℎ𝑒𝑒 Percentage of curve (PerHC) 0.0909 0.03139 2.9 0.0041 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

0.1568 0.04537 3.45 0.0007 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

— — — — 

𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) — — — — 

𝑘𝑘 Inverse dispersion parameter for 4-lane segments  −0.2749 0.1688 −1.63 0.1048 
Inverse dispersion parameter for 6-lane segments 0.166 0.238 0.7 0.4862 
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Table 31. Calibrated Coefficients for KABC Crashes on Interstates—Washington Only. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −4.9994 1.8192 −2.75 0.0065 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.6498 0.1083 6.0 <.0001 

𝑏𝑏ℎ𝑒𝑒 Percentage of curve (PerHC) 0.0780 0.0342 2.28 0.0233 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

0.1063 0.05696 1.87 0.0633 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

−0.0405 0.0287 −1.41 0.1597 

𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) — — — — 

𝑘𝑘 Inverse dispersion parameter for 4-lane segments  −0.2156 0.304 −0.71 0.4788 
Inverse dispersion parameter for 6-lane segments 0.7905 0.5844 1.35 0.1774 

Table 32. Calibrated Coefficients for PDO Crashes on Interstates—Washington Only. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −7.3084 0.9487 −7.7 <.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 Traffic volume (AADT) 0.7098 0.09614 7.38 <.0001 

𝑏𝑏ℎ𝑒𝑒 Percentage of curve (PerHC) 0.0665 0.03109 2.14 0.0334 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

0.1439 0.04983 2.89 0.0042 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

0.1882 0.1206 1.56 0.1202 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

— — — — 

𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) — — — — 

𝑘𝑘 

Inverse dispersion parameter for 4-lane 
segments  

−0.1788 0.192 −0.93 0.3527 

Inverse dispersion parameter for 6-lane 
segments 

0.0904 0.2575 0.35 0.726 
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Table 33. Calibrated Coefficients for KABCO Crashes on Two-Lane Highways—Two 
States. 

Coefficient Variable Value Std. Dev t-statistic p-value 
𝑏𝑏0 Intercept  −5.8138 0.3697 −15.73 <.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.6048 0.04399 13.75 <.0001 

𝑏𝑏𝑡𝑡𝑙𝑙  Lane width (LW) −0.0245 0.02119 −1.16 0.2479 
𝑏𝑏ℎ𝑒𝑒 Percentage of curve (PerHC) 0.8681 0.2418 3.59 0.0003 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

— — — — 

𝑏𝑏𝑖𝑖𝑛𝑛𝑡𝑡 Intersection presence (PIntPre) 0.3163 0.05495 5.76 <.0001 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) −0.5372 0.225 −2.39 0.0171 
𝑏𝑏𝑂𝑂𝑂𝑂  Added effect of Ohio 0.6332 0.07294 8.68 <.0001 
𝑘𝑘 Inverse dispersion parameter  −0.5898 0.08101 −7.28 <.0001 

Table 34. Calibrated Coefficients for KABC Crashes on Two-Lane Highways—Two States. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −7.6705 0.5459 −14.05 <.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.6435 0.06245 10.3 <.0001 

𝑏𝑏𝑡𝑡𝑙𝑙  Lane width (LW) −0.044 0.031 −1.41 0.1578 
𝑏𝑏ℎ𝑒𝑒 Percentage of curve (PerHC) 1.0319 0.3672 2.81 0.005 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

0.1654 0.0759 2.18 0.0295 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

— — — — 

𝑏𝑏𝑖𝑖𝑛𝑛𝑡𝑡 Intersection presence (PIntPre) 0.2769 0.07754 3.57 0.0004 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) — — — — 
𝑏𝑏𝑂𝑂𝑂𝑂  Added effect of Ohio 0.4103 0.1013 4.05 <.0001 
𝑘𝑘 Inverse dispersion parameter  −0.5419 0.1751 −3.1 0.002 
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Table 35. Calibrated Coefficients for PDO Crashes on Two-Lane Highways—Two States. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −5.8097 0.4087 −14.22 <.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.5679 0.04852 11.7 <.0001 

𝑏𝑏𝑡𝑡𝑙𝑙  Lane width (LW) — — — — 
𝑏𝑏ℎ𝑒𝑒 Percentage of curve (PerHC) 0.823 0.264 3.12 0.0019 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

0.02845 0.01509 1.89 0.0596 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

−0.0689 0.05959 −1.16 0.2476 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

— — — — 

𝑏𝑏𝑖𝑖𝑛𝑛𝑡𝑡 Intersection presence (PIntPre) 0.3296 0.06053 5.45 <.0001 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) −0.6149 0.2535 −2.43 0.0154 
𝑏𝑏𝑂𝑂𝑂𝑂  Added effect of Ohio 0.6691 0.08161 8.2 <.0001 
𝑘𝑘 Inverse dispersion parameter  −0.6856 0.0909 −7.54 <.0001 

Table 36. Calibrated Coefficients for KABCO Crashes on Two-Lane Highways—
Ohio Only. 

Coefficient Variable Value Std. Dev t-statistic p-value 
𝑏𝑏0 Intercept  −3.6772 0.7811 −4.71 <.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.3706 0.08698 4.26 <.0001 

𝑏𝑏𝑡𝑡𝑙𝑙  Lane width (LW) 0.04195 0.03112 1.35 0.1782 
𝑏𝑏ℎ𝑒𝑒 Percentage of curve (PerHC) 0.3297 0.4105 0.8 0.4222 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

— — — — 

𝑏𝑏𝑖𝑖𝑛𝑛𝑡𝑡 Intersection presence (PIntPre) 0.4498 0.0889 5.06 <.0001 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) 0.6097 0.6492 0.94 0.348 
𝑘𝑘 Inverse dispersion parameter  −0.5954 0.1132 −5.26 <.0001 
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Table 37. Calibrated Coefficients for KABC Crashes on Two-Lane Highways—Ohio Only. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −6.8237 1.0436 −6.54 <.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.5967 0.1223 4.88 <.0001 

𝑏𝑏𝑡𝑡𝑙𝑙  Lane width (LW) 0.05122 0.04212 1.22 0.2244 
𝑏𝑏ℎ𝑒𝑒 Percentage of curve (PerHC) 0.6058 0.6394 0.95 0.3437 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

— — — — 

𝑏𝑏𝑖𝑖𝑛𝑛𝑡𝑡 Intersection presence (PIntPre) 0.4074 0.1149 3.55 0.0004 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) — — — — 
𝑘𝑘 Inverse dispersion parameter  −0.3375 0.2781 −1.21 0.2253 

Table 38. Calibrated Coefficients for PDO Crashes on Two-Lane Highways—Ohio Only. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −3.4111 0.7002 −4.87 <.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.3352 0.08329 4.02 <.0001 

𝑏𝑏𝑡𝑡𝑙𝑙  Lane width (LW) — — — — 
𝑏𝑏ℎ𝑒𝑒 Percentage of curve (PerHC) — — — — 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

0.3224 0.1433 2.25 0.0248 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

— — — — 

𝑏𝑏𝑖𝑖𝑛𝑛𝑡𝑡 Intersection presence (PIntPre) 0.3817 0.0865 4.41 <.0001 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) — — — — 
𝑘𝑘 Inverse dispersion parameter  −0.6361 0.1168 −5.44 <.0001 
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Table 39. Calibrated Coefficients for KABCO Crashes on Two-Lane Highways—
Washington Only. 

Coefficient Variable Value Std. Dev t-statistic p-value 
𝑏𝑏0 Intercept  −6.5573 0.4216 −15.55 <.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.6962 0.05081 13.7 <.0001 

𝑏𝑏𝑡𝑡𝑙𝑙  Lane width (LW) −0.0962 0.03186 −3.02 0.0026 
𝑏𝑏ℎ𝑒𝑒 Percentage of curve (PerHC) 1.1538 0.3097 3.73 0.0002 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

0.04442 0.01539 2.89 0.004 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

— — — — 

𝑏𝑏𝑖𝑖𝑛𝑛𝑡𝑡 Intersection presence (PIntPre) 0.2278 0.0685 3.33 0.0009 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) −0.8338 0.2398 −3.48 0.0005 
𝑘𝑘 Inverse dispersion parameter  −0.4755 0.1219 −3.9 0.0001 

Table 40. Calibrated Coefficients for KABC Crashes on Two-Lane Highways—
Washington Only. 

Coefficient Variable Value Std. Dev t-statistic p-value 
𝑏𝑏0 Intercept  −7.9683 0.639 −12.47 <.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.6744 0.07368 9.15 <.0001 

𝑏𝑏𝑡𝑡𝑙𝑙  Lane width (LW) −0.1814 0.05974 −3.04 0.0025 
𝑏𝑏ℎ𝑒𝑒 Percentage of curve (PerHC) 1.1829 0.4547 2.6 0.0095 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

0.0356 0.02236 1.59 0.1118 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

0.1878 0.09764 1.92 0.0549 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

— — — — 

𝑏𝑏𝑖𝑖𝑛𝑛𝑡𝑡 Intersection presence (PIntPre) 0.1801 0.1041 1.73 0.084 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) — — — — 
𝑘𝑘 Inverse dispersion parameter  −0.5871 0.2444 −2.4 0.0166 
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Table 41. Calibrated Coefficients for PDO Crashes on Two-Lane Highways—
Washington Only. 

Coefficient Variable Value Std. Dev t-statistic p-value 
𝑏𝑏0 Intercept  −6.9051 0.4772 −14.47 <.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.7048 0.05729 12.3 <.0001 

𝑏𝑏𝑡𝑡𝑙𝑙  Lane width (LW) −0.0672 0.0342 −1.96 0.0499 
𝑏𝑏ℎ𝑒𝑒 Percentage of curve (PerHC) 1.1356 0.3471 3.27 0.0011 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

0.04454 0.0168 2.65 0.0082 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

— — — — 

𝑏𝑏𝑖𝑖𝑛𝑛𝑡𝑡 Intersection presence (PIntPre) 0.2398 0.07629 3.14 0.0017 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) −1.0547 0.2707 −3.9 0.0001 
𝑘𝑘 Inverse dispersion parameter  −0.5654 0.1411 −4.01 <.0001 

Table 42. Calibrated Coefficients for KABCO Crashes on Multilane Highways—
Two States. 

Coefficient Variable Value Std. Dev t-statistic p-value 
𝑏𝑏0 Intercept  −6.4938 0.9805 −6.62 <.0001 
𝑏𝑏𝑢𝑢 Adjustment for undivided road  0.2686 0.1588 1.69 0.0911 

𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.4848 0.09217 5.26 <.0001 

𝑏𝑏𝑒𝑒𝑠𝑠  Percentage of curve (PerHC) 2.0307 0.675 3.01 0.0027 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

0.05879 0.02512 2.34 0.0196 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

0.3911 0.1341 2.92 0.0037 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

0.02695 0.006935 3.89 0.0001 

𝑏𝑏𝑖𝑖𝑛𝑛𝑡𝑡 Intersection presence (PIntPre) 0.5714 0.1006 5.68 <.0001 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) −1.9369 0.5511 −3.51 0.0005 
𝑏𝑏𝑂𝑂𝑂𝑂  Added effect of Ohio 0.8282 0.1517 5.46 <.0001 

𝑘𝑘 Inverse dispersion parameter for undivided roads −0.5868 0.2812 −2.09 0.0373 
Inverse dispersion parameter for divided roads −0.9955 0.1013 −9.82 <.0001 
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Table 43. Calibrated Coefficients for KABC Crashes on Multilane Highways—Two States. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −6.9752 1.2166 −5.73 <.0001 
𝑏𝑏𝑢𝑢 Adjustment for undivided road 0.3903 0.1899 2.06 0.0402 

𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.3573 0.1066 3.35 0.0008 

𝑏𝑏𝑒𝑒𝑠𝑠  Percentage of curve (PerHC) 1.574 0.6751 2.33 0.02 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

0.04402 0.03142 1.4 0.1617 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

0.2418 0.1371 1.76 0.0783 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

0.2159 0.1605 1.34 0.1792 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

0.02393 0.008964 2.67 0.0078 

𝑏𝑏𝑖𝑖𝑛𝑛𝑡𝑡 Intersection presence (PIntPre) 0.5625 0.1169 4.81 <.0001 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) — — — — 
𝑏𝑏𝑂𝑂𝑂𝑂  Added effect of Ohio 0.3397 0.1701 2 0.0463 

𝑘𝑘 Inverse dispersion parameter for undivided roads −0.2271 0.6194 −0.37 0.7139 
Inverse dispersion parameter for divided roads −0.8616 0.1959 −4.4 <.0001 

Table 44. Calibrated Coefficients for PDO Crashes on Multilane Highways—Two States.  
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −7.4546 1.0195 −7.31 <.0001 
𝑏𝑏𝑢𝑢 Adjustment for undivided road 0.2053 0.168 1.22 0.2222 

𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.5529 0.09649 5.73 <.0001 

𝑏𝑏𝑒𝑒𝑠𝑠  Percentage of curve (PerHC) 2.3082 0.7815 2.95 0.0033 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

0.05048 0.02538 1.99 0.0472 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

0.4013 0.1369 2.93 0.0035 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

0.02519 0.007172 3.51 0.0005 

𝑏𝑏𝑖𝑖𝑛𝑛𝑡𝑡 Intersection presence (PIntPre) 0.5797 0.1034 5.61 <.0001 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) −1.8614 0.5761 −3.23 0.0013 
𝑏𝑏𝑂𝑂𝑂𝑂  Added effect of Ohio 1.005 0.1641 6.12 <.0001 

𝑘𝑘 Inverse dispersion parameter for undivided roads −0.6188 0.3123 −1.98 0.048 
Inverse dispersion parameter for divided roads −0.9469 0.1105 −8.57 <.0001 
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Table 45. Calibrated Coefficients for KABCO Crashes on Multilane Highways—
Ohio Only. 

Coefficient Variable Value Std. Dev t-statistic p-value 
𝑏𝑏0 Intercept  −5.5104 1.2142 −4.54 <.0001 
𝑏𝑏𝑢𝑢 Adjustment for undivided road  0.4826 0.2098 2.3 0.0219 

𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.4335 0.1193 3.63 0.0003 

𝑏𝑏𝑒𝑒𝑠𝑠  Percentage of curve (PerHC) 1.5865 1.0349 1.53 0.126 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

0.06663 0.02749 2.42 0.0158 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

0.2969 0.1651 1.8 0.0728 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

0.03078 0.008153 3.78 0.0002 

𝑏𝑏𝑖𝑖𝑛𝑛𝑡𝑡 Intersection presence (PIntPre) 0.6052 0.1256 4.82 <.0001 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) −1.7573 0.9595 −1.83 0.0677 

𝑘𝑘 Inverse dispersion parameter for undivided roads −0.601 0.3325 −1.81 0.0714 
Inverse dispersion parameter for divided roads −1.0595 0.1147 −9.24 <.0001 

Table 46. Calibrated Coefficients for KABC Crashes on Multilane Highways—Ohio Only. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −6.5777 1.334 −4.93 <.0001 
𝑏𝑏𝑢𝑢 Adjustment for undivided road 0.4598 0.2491 1.85 0.0655 

𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 Traffic volume (AADT) 0.3381 0.1328 2.55 0.0112 

𝑏𝑏𝑒𝑒𝑠𝑠  Percentage of curve (PerHC) 1.4143 0.8936 1.58 0.1141 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

0.05036 0.03329 1.51 0.1309 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

0.4081 0.1594 2.56 0.0107 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

0.02381 0.009788 2.43 0.0153 

𝑏𝑏𝑖𝑖𝑛𝑛𝑡𝑡 Intersection presence (PIntPre) 0.7757 0.1346 5.76 <.0001 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) — — — — 

𝑘𝑘 
Inverse dispersion parameter for undivided 
roads 

−0.5042 0.6187 −0.81 0.4155 

Inverse dispersion parameter for divided roads −0.6138 0.2682 −2.29 0.0225 
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Table 47. Calibrated Coefficients for PDO Crashes on Multilane Highways—Ohio Only.  
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −6.0308 1.2302 −4.9 <.0001 
𝑏𝑏𝑢𝑢 Adjustment for undivided road 0.4513 0.2146 2.1 0.036 

𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.4945 0.1233 4.01 <.0001 

𝑏𝑏𝑒𝑒𝑠𝑠  Percentage of curve (PerHC) 0.9358 0.7851 1.19 0.2339 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

0.0599 0.02743 2.18 0.0295 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

0.3553 0.1653 2.15 0.0322 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

0.03055 0.008305 3.68 0.0003 

𝑏𝑏𝑖𝑖𝑛𝑛𝑡𝑡 Intersection presence (PIntPre) 0.5664 0.1267 4.47 <.0001 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) −2.3932 0.964 −2.48 0.0134 

𝑘𝑘 Inverse dispersion parameter for undivided roads −0.5522 0.3681 −1.5 0.1342 
Inverse dispersion parameter for divided roads −1.0097 0.1236 −8.17 <.0001 

Table 48. Calibrated Coefficients for KABCO Crashes on Multilane Highways—
Washington Only. 

Coefficient Variable Value Std. Dev t-statistic p-value 
𝑏𝑏0 Intercept  −6.4405 1.3246 −4.86 <.0001 
𝑏𝑏𝑢𝑢 Adjustment for undivided road  — — — — 

𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.6473 0.143 4.53 <.0001 

𝑏𝑏𝑒𝑒𝑠𝑠  Percentage of curve (PerHC) 3.6393 1.2532 2.9 0.0043 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

−0.1038 0.07085 −1.47 0.145 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

−0.292 0.162 −1.8 0.0737 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

0.8381 0.2444 3.43 0.0008 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

— — — — 

𝑏𝑏𝑖𝑖𝑛𝑛𝑡𝑡 Intersection presence (PIntPre) 0.452 0.1522 2.97 0.0035 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) −1.0708 0.7006 −1.53 0.1288 

𝑘𝑘 Inverse dispersion parameter for undivided roads −0.4212 0.2301 −1.83 0.0693 
Inverse dispersion parameter for divided roads −0.4212 0.2301 −1.83 0.0693 
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Table 49. Calibrated Coefficients for KABC Crashes on Multilane Highways—
Washington Only. 

Coefficient Variable Value Std. Dev t-statistic p-value 
𝑏𝑏0 Intercept  −11.196 2.4944 −4.49 <.0001 
𝑏𝑏𝑢𝑢 Adjustment for undivided road 0.3376 0.3285 1.03 0.3059 

𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.6593 0.1706 3.86 0.0002 

𝑏𝑏𝑒𝑒𝑠𝑠  Percentage of curve (PerHC) 0.9047 0.6937 1.3 0.1944 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

−0.1504 0.08773 −1.71 0.0887 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

1.0588 0.2703 3.92 0.0001 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

0.0598 0.02571 2.33 0.0215 

𝑏𝑏𝑖𝑖𝑛𝑛𝑡𝑡 Intersection presence (PIntPre) −0.0212 0.1919 −0.11 0.9123 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) — — — — 

𝑘𝑘 Inverse dispersion parameter for undivided roads 0.0506 0.5727 0.09 0.9297 
Inverse dispersion parameter for divided roads 0.0506 0.5727 0.09 0.9297 

Table 50. Calibrated Coefficients for PDO Crashes on Multilane Highways—
Washington Only.  

Coefficient Variable Value Std. Dev t-statistic p-value 
𝑏𝑏0 Intercept  −7.634 1.4845 −5.14 <.0001 
𝑏𝑏𝑢𝑢 Adjustment for undivided road −0.3211 0.243 −1.32 0.1886 

𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.7084 0.1577 4.49 <.0001 

𝑏𝑏𝑒𝑒𝑠𝑠  Percentage of curve (PerHC) 4.7683 1.8239 2.61 0.0099 

𝑏𝑏𝑠𝑠𝑑𝑑 Avg. spd. diff. in weekday/weekend 
(SpdW_W) 

−0.116 0.07341 −1.58 0.1164 

𝑏𝑏𝑠𝑠𝑠𝑠1 Standard dev. of hourly operating speeds 
(SDHrSpd) 

— — — — 

𝑏𝑏𝑠𝑠𝑠𝑠2 Standard dev. of monthly operating speeds 
(SDMonSpd) 

0.6856 0.2526 2.71 0.0075 

𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠 Average hourly non-peak non-event speed 
(SpdNPNE) 

— — — — 

𝑏𝑏𝑖𝑖𝑛𝑛𝑡𝑡 Intersection presence (PIntPre) 0.5999 0.1672 3.59 0.0005 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of days with precipitation (PPrcp) −1.1059 0.7611 −1.45 0.1485 

𝑘𝑘 Inverse dispersion parameter for undivided roads −0.417 0.2592 −1.61 0.11 
Inverse dispersion parameter for divided roads −0.417 0.2592 −1.61 0.11 





 

89 

 
APPENDIX C. SAFETY DISTRIBUTION FUNCTIONS (ANNUAL-LEVEL DATA) 

This appendix documents the development of severity distribution functions.  

FUNCTIONAL FORM 

An SDF is represented by a discrete choice model. It is used to predict the proportion of crashes 
in each of the following severity categories: fatal = K, injury = I, or property damage only = O. 
The SDF can be used with the SPFs to estimate the expected crash frequency for each severity 
category. It may include various geometric, operation, and traffic variables that will allow the 
estimated proportion to be specific to an individual segment.  

The multinomial logit (MNL) model is used to predict the probability of crash severities. Given 
the characteristics of the data, the MNL is the most suitable model for estimating an SDF. A 
linear function is used to relate the crash severity with the operational variables. SAS’s nonlinear 
mixed modeling procedure is used for the evaluation of the MNL model.  

The probability for each crash severity category is given by the following equations:  

 𝑂𝑂𝐾𝐾 = 
𝐴𝐴𝑉𝑉𝐾𝐾

1 + 𝐴𝐴𝑉𝑉𝐾𝐾 + 𝐴𝐴𝑉𝑉𝐼𝐼 + 𝐴𝐴𝑉𝑉𝑂𝑂
 

 
 (18)  

 𝑂𝑂𝐼𝐼 = 
𝐴𝐴𝑉𝑉𝐼𝐼

1 + 𝐴𝐴𝑉𝑉𝐾𝐾 + 𝐴𝐴𝑉𝑉𝐼𝐼 + 𝐴𝐴𝑉𝑉𝑂𝑂
 

 
 (19)  

 𝑂𝑂𝑂𝑂 = 1
− (𝑂𝑂𝐾𝐾 + 𝑂𝑂𝐼𝐼)   (20) 

where: 

jP  = probability of the occurrence of crash severity j.  

jV  = systematic component of crash severity likelihood for severity j. 

MODEL DEVELOPMENT 

The database assembled for calibration includes crash severity level as a dependent variable and 
the geometric and operational variables of each site as independent variables. Each row (site 
characteristics) is repeated to the frequency of each severity level. Thus, a segment with n 
crashes will be repeated n number of times. It should be noted that the segments without any 
crashes are not included in the database. The total sample size of the final dataset for model 
calibration will be equal to the total number of crashes in the data. During the model calibration, 
the PDO category is set as the base scenario with coefficients restricted at zero.  
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Rural Interstate Highways 

A model for estimating the systematic component of crash severity Vj for interstate segments is 
described by the following equations. 

𝑉𝑉𝐾𝐾 = 𝐴𝐴𝑆𝑆𝐶𝐶𝐾𝐾 + 𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒,𝐾𝐾 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴1 + 𝑏𝑏𝑠𝑠𝑠𝑠,𝐾𝐾 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴1 + 𝑏𝑏𝑒𝑒𝑠𝑠,𝐾𝐾 × 𝑆𝑆𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 + 𝑏𝑏𝑂𝑂𝑂𝑂,𝐾𝐾
× 𝐼𝐼𝑂𝑂𝑂𝑂 

 

𝑉𝑉𝐼𝐼 = 𝐴𝐴𝑆𝑆𝐶𝐶𝐼𝐼 + 𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒,𝐼𝐼 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴1 + 𝑏𝑏𝑠𝑠𝑠𝑠,𝐼𝐼 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴1 + 𝑏𝑏𝑒𝑒𝑠𝑠,𝐼𝐼 × 𝑆𝑆𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 + 𝑏𝑏𝑂𝑂𝑂𝑂,𝐼𝐼
× 𝐼𝐼𝑂𝑂𝑂𝑂 

 
(21) 

where: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝐶𝐶𝐴𝐴𝑆𝑆𝐴𝐴1 = standard deviation of operating speed before crash (1 hour; crash day). 
𝑆𝑆𝑆𝑆𝑆𝑆𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴1 = standard deviation of operating speed by hour. 

𝑆𝑆𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 = percent of days with precipitation. 
𝐼𝐼𝑂𝑂𝑂𝑂 = Ohio indicator variable (= 1.0 if Ohio, 0.0 if Washington). 

 = alternative specific constant for crash severity j. 
 = calibration coefficient for variable k and crash severity j. 

 
Table 51 summarizes the estimation results of the MNL model for the interstate segments. An 
examination of the coefficient values and their implication on the corresponding crash severity 
levels are documented in this section.  

Table 51. Parameter Estimation for the Interstate Segments’ SDF. 

Coefficient Variable Fatality (K) Injury (I) 
Value t-statistic Value t-statistic 

ASC  Alternative specific constant −4.765 −6.53 −1.024 −8.51 

𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒 
Standard Deviation of Operating Speed 
before Crash (SDBCSpd) 0.017 2.33 0.017 2.33 

𝑏𝑏𝑠𝑠𝑠𝑠 
Standard dev. of hourly operating 
speeds (SDHrSpd) 1.024 2.75 −0.134 −2.18 

𝑏𝑏𝑒𝑒𝑠𝑠 Percentage of days with precipitation 
(PPrcp) −0.046 −2.37 — — 

𝑏𝑏𝑂𝑂𝑂𝑂 Ohio  −0.701 −2.14 −0.309 −4.72 
Observations 7,443 crashes (K = 41; I = 1,597; O = 5,805) 

Note: PDO is the base scenario with coefficients restricted at zero. 
 
Standard deviation of operating speed before crash: This variable represents the standard 
deviation of operating speed before a crash. As this standard deviation of speed before a crash 
increases, the probability of fatal or injury crash severity increases.  

Standard deviation of operating speed by hour: This variable represents the standard 
deviation of operating speed by the hour. A larger variable value represents that the road segment 
will experience frequent congestion or the speeds are higher than normal during some hours of a 
day. As this variable value increases, the probability of a fatal crash increases but the probability 
of an injury crash decreases.  

jASC

jkb ,
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Precipitation: This variable represents the percent of days with some level of precipitation. The 
coefficient is negative and significant for fatal crashes only. It shows that, with the increase in 
precipitation, the chance of fatal crashes decreases, probably due to the decrease in speeds. 

State: This variable indicates whether the segment is in Ohio or Washington. The model 
coefficients indicate that the crashes in Ohio are less severe than in Washington. This finding 
could be due to differences in weather, terrain, or reporting thresholds. 

Rural Two-Lane Highways 

A model for estimating the systematic component of crash severity Vj for two-lane segments is 
described by the following equations. 

𝑉𝑉𝐾𝐾 = 𝐴𝐴𝑆𝑆𝐶𝐶𝐾𝐾 + 𝑏𝑏𝑠𝑠𝑠𝑠𝑙𝑙,𝐾𝐾 × 𝑆𝑆𝐶𝐶𝑆𝑆 + 𝑏𝑏𝑠𝑠𝑠𝑠,𝐾𝐾 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴1 + 𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒,𝐾𝐾 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝐶𝐶𝐴𝐴1 + 𝑏𝑏𝑂𝑂𝑂𝑂,𝐾𝐾
× 𝐼𝐼𝑂𝑂𝑂𝑂 

 

𝑉𝑉𝐼𝐼 = 𝐴𝐴𝑆𝑆𝐶𝐶𝐼𝐼 + 𝑏𝑏𝑠𝑠𝑠𝑠𝑙𝑙,𝐼𝐼 × 𝑆𝑆𝐶𝐶𝑆𝑆 + 𝑏𝑏𝑠𝑠𝑠𝑠,𝐼𝐼 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴1 + 𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒,𝐼𝐼 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝐶𝐶𝐴𝐴1 + 𝑏𝑏𝑂𝑂𝑂𝑂,𝐼𝐼
× 𝐼𝐼𝑂𝑂𝑂𝑂 

 
(22) 

 
where: 

𝑆𝑆𝐶𝐶𝑆𝑆 = surface width. 
 
Table 52 summarizes the estimation results of the MNL model for the two-lane segments. An 
examination of the coefficient values and their implications on the corresponding crash severity 
levels are documented in a subsequent section.  

Table 52. Parameter Estimation for the Two-Lane Segments’ SDF. 

Coefficient Variable 
Fatality (K) Injury (I) 

Value t-statistic Value t-statistic 
ASC  Alternative specific constant −3.833 −1.54 0.155 0.29 
𝑏𝑏𝑠𝑠𝑠𝑠𝑙𝑙 Surface width −0.072 −0.95 −0.029 −1.82 

𝑏𝑏𝑠𝑠𝑠𝑠 
Standard dev. of hourly 
operating speeds (SDHrSpd) 0.178 0.85 0.146 2.74 

𝑏𝑏𝑒𝑒𝑠𝑠 Percentage of days with 
precipitation (PPrcp) −0.029 1.22 0.011 −2.25 

𝑏𝑏𝑂𝑂𝑂𝑂 Ohio −0.354 −1.17 −0.311 −3.91 
Observations 7,443 crashes (K = 53; I = 987; O = 2,851) 

Note: PDO is the base scenario with coefficients restricted at zero. 
 
Standard deviation of operating speed before crash: This variable represents the standard 
deviation of operating speed before a crash. The coefficient is positive and marginally significant 
for fatal crashes only. As this standard deviation of speed before a crash increases, the 
probability of fatal crash severity increases and has no effect on injury crash severity.  

Standard deviation of operating speed by hour: This variable represents the standard 
deviation of operating speed by the hour. The coefficient is positive and marginally significant 
for fatal crashes only. As this variable value increases, the probability of a fatal crash increases. 
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Precipitation: This variable represents the percent of days with some level of precipitation. The 
coefficient is negative for fatal crashes but positive for injury crashes. It shows that, with the 
increase in precipitation, the chance of fatal crashes decreases but the likelihood of injury crashes 
increases, probably due to the decrease in speeds. 

State: This variable indicates whether the segment is in Ohio or Washington. The model 
coefficients indicate that the crashes in Ohio are less severe than in Washington. This finding 
could be due to differences in weather, terrain, or reporting thresholds. 

Rural Multilane Highways  

A model for estimating the systematic component of crash severity Vj for multilane segments is 
described by the following equations. 

𝑉𝑉𝐾𝐾 = 𝐴𝐴𝑆𝑆𝐶𝐶𝐾𝐾 + 𝑏𝑏𝑠𝑠𝑠𝑠,𝐾𝐾 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴1 + 𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒,𝐾𝐾 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝐶𝐶𝐴𝐴1 + 𝑏𝑏𝑒𝑒𝑠𝑠,𝐾𝐾 × 𝑆𝑆𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 + 𝑏𝑏𝑂𝑂𝑂𝑂,𝐾𝐾
× 𝐼𝐼𝑂𝑂𝑂𝑂 

 

𝑉𝑉𝐼𝐼 = 𝐴𝐴𝑆𝑆𝐶𝐶𝐼𝐼 + 𝑏𝑏𝑒𝑒𝑠𝑠,𝐼𝐼 × 𝑆𝑆𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 + 𝑏𝑏𝑂𝑂𝑂𝑂,𝐼𝐼 × 𝐼𝐼𝑂𝑂𝑂𝑂 (23) 
 
Table 53 summarizes the estimation results of the MNL model for the multilane segments.  

Table 53. Parameter Estimation for the Multilane Segments’ SDF. 

Coefficient Variable 
Fatality (K) Injury (I) 

Value t-statistic Value t-statistic 
ASC  Alternative specific constant −7.399 −2.12 −1.056 −4.39 

𝑏𝑏𝑠𝑠𝑠𝑠 
Standard dev. of hourly operating 
speeds (SDHrSpd) 0.411 1.41 — — 

𝑏𝑏𝑠𝑠𝑏𝑏𝑒𝑒 
Standard Deviation of Operating 
Speed before Crash (SDBCSpd) 0.063 1.27 — — 

𝑏𝑏𝑒𝑒𝑠𝑠 Percentage of days with precipitation 
(PPrcp) −0.038 −1.10 0.0038 0.63 

𝑏𝑏𝑂𝑂𝑂𝑂 Ohio −0.339 −0.57 −0.4335 −3.89 
Observations 2,587 crashes (K = 15; I = 569; O = 2,003) 

Note: PDO is the base scenario with coefficients restricted at zero. 
 
Standard deviation of operating speed before crash: This variable represents the standard 
deviation of operating speed before a crash. The coefficient is positive and marginally significant 
for fatal crashes only. As this standard deviation of speed before a crash increases, the 
probability of fatal crash severity increases and has no effect on injury crash severity.  

Standard deviation of operating speed by hour: This variable represents the standard 
deviation of operating speed by the hour. The coefficient is positive and marginally significant 
for fatal crashes only. As this variable value increases, the probability of a fatal crash increases. 

Precipitation: This variable represents the percent of days with some level of precipitation. The 
coefficient is negative for fatal crashes but positive for injury crashes. It shows that, with the 
increase in precipitation, the chance of fatal crashes decreases but the likelihood of injury crashes 
increases, probably due to the decrease in speeds. 
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State: This variable indicates whether the segment is in Ohio or Washington. The model 
coefficients indicate that the crashes in Ohio are less severe than in Washington. This finding 
could be due to differences in weather, terrain, or reporting thresholds. 
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APPENDIX D. DEVELOPED MODELS (DAILY-LEVEL DATA) 

Table 54. Calibrated Coefficients for KABCO Crashes on Interstate Roadways—
Ohio Only. 

Coefficient Variable Value Std. Dev t-statistic p-value 
𝑏𝑏0 Intercept  −9.4829 0.8506 −11.1480 <0.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT)  0.7126 0.0788 9.0450 <0.0001 
𝑏𝑏𝑡𝑡 Segment length (Len) 0.2328 0.0087 26.6980 <0.0001 
𝑏𝑏𝑛𝑛𝑡𝑡 Number of lanes (Lanes) 0.0589 0.1401 0.4210 0.6741 
𝑏𝑏𝑠𝑠𝑙𝑙 Lane width (LW) −0.0093 0.0120 −0.7720 0.4404 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of precipitation (PPrep) 0.2352 0.0545 4.3150 <0.0001 
𝑏𝑏𝑛𝑛𝑒𝑒 Number of curvatures (NCurv) −0.6125 0.2124 −2.8840 0.0039 
𝑏𝑏𝑡𝑡𝑒𝑒  Total length of curvatures (LCurv) — — — — 

𝑏𝑏𝑠𝑠𝑠𝑠𝑑𝑑 Standard deviation of daily average speed 
(SDDailySpd) 

0.1376 0.0286 4.8160 <0.0001 

𝑏𝑏𝑑𝑑𝑠𝑠𝑠𝑠 Daily average speed (SpdAvgDaily) −0.0405 0.0054 −7.5440 <0.0001 
Note: Null deviance: 24422; Residual deviance: 23182; Dispersion parameter: 1.4693; Number of Fisher scoring 
iterations: 6.  

Table 55. Calibrated Coefficients for KABC Crashes on Interstate Roadways—Ohio Only. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −15.7714 2.0044 −7.8680 <0.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 Traffic volume (AADT)  1.0987 0.1831 6.0020 <0.0001 

𝑏𝑏𝑡𝑡 Segment length (Len) 0.2256 0.0199 11.3650 <0.0001 
𝑏𝑏𝑠𝑠𝑙𝑙 Lane width (LW) 0.5191 0.3053 1.7010 0.0890 
𝑏𝑏𝑛𝑛𝑡𝑡 Number of lanes (Lanes) −0.0529 0.0263 −2.0100 0.0445 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of precipitation (PPrep) 0.3090 0.1165 2.6530 0.0080 
𝑏𝑏𝑛𝑛𝑒𝑒 Number of curvatures (NCurv) 0.0852 0.2768 0.3080 0.7583 
𝑏𝑏𝑡𝑡𝑒𝑒  Total length of curvatures (LCurv) — — — — 

𝑏𝑏𝑠𝑠𝑠𝑠𝑑𝑑 Standard deviation of daily average speed 
(SDDailySpd) 

0.3011 0.0638 4.7210 <0.0001 

𝑏𝑏𝑑𝑑𝑠𝑠𝑠𝑠 Daily average speed (SpdAvgDaily) −0.0328 0.0130 −2.5310 0.0114 
Note: Null deviance: 7697.2; Residual deviance: 7362.8; Dispersion parameter: 1.7943; Number of Fisher scoring 
iterations: 8. 
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Table 56. Calibrated Coefficients for KABCO Crashes on Interstate Roadways—
Washington Only. 

Coefficient Variable Value Std. Dev t-statistic p-value 
𝑏𝑏0 Intercept  −11.8000 1.2900 −9.17 <.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.6470 0.1240 5.228 <.0001 
𝑏𝑏𝑡𝑡 Segment length (Len) 0.1930 0.0284 6.815 <.0001 
𝑏𝑏𝑛𝑛𝑡𝑡 Number of lanes (Lanes) −0.1030 0.1850 −0.555 0.579 
𝑏𝑏𝑠𝑠𝑙𝑙 Lane width (LW) −0.0001 0.0152 −0.006 0.9954 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of precipitation (PPrep) 0.2080 0.1260 1.654 0.0981 
𝑏𝑏𝑛𝑛𝑒𝑒 Number of curvatures (NCurv) 0.0137 0.0134 1.023 0.3061 
𝑏𝑏𝑡𝑡𝑒𝑒  Total length of curvatures (LCurv) −0.0882 0.1080 −0.82 0.4123 

𝑏𝑏𝑠𝑠𝑠𝑠𝑑𝑑 Standard deviation of daily average speed 
(SDDailySpd) 0.3520 0.0766 4.591 <.0001 

𝑏𝑏𝑑𝑑𝑠𝑠𝑠𝑠 Daily average speed (SpdAvgDaily) −0.0078 0.0145 −0.535 0.5929 
Note: Null deviance: 22,220; Residual deviance: 20,902; Dispersion parameter: 1.842634; Number of Fisher 
scoring iterations: 7. 

Table 57. Calibrated Coefficients for KABC Crashes on Interstate Roadways—
Washington Only. 

Coefficient Variable Value Std. Dev t-statistic p-value 
𝑏𝑏0 Intercept  −11.4046 2.3923 −4.7670 <.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.4614 0.2311 1.9970 0.0459 
𝑏𝑏𝑡𝑡 Segment length (Len) 0.2550 0.0506 5.0390 <.0001 
𝑏𝑏𝑠𝑠𝑙𝑙 Lane width (LW) −0.3186 0.3374 −0.9440 0.3451 
𝑏𝑏𝑛𝑛𝑡𝑡 Number of lanes (Lanes) 0.0192 0.0273 0.7020 0.4825 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of precipitation (PPrep) 0.1960 0.2482 0.7900 0.4297 
𝑏𝑏𝑛𝑛𝑒𝑒 Number of curvatures (NCurv) 0.0139 0.0256 0.5440 0.5867 
𝑏𝑏𝑡𝑡𝑒𝑒  Total length of curvatures (LCurv) −0.2262 0.2064 −1.0960 0.2732 

𝑏𝑏𝑠𝑠𝑠𝑠𝑑𝑑 Standard deviation of daily average speed 
(SDDailySpd) 0.3455 0.1422 2.4300 0.0151 

𝑏𝑏𝑑𝑑𝑠𝑠𝑠𝑠 Daily average speed (SpdAvgDaily) −0.0080 0.0266 −0.3010 0.7638 
Note: Null deviance: 2,583.3; Residual deviance: 2,513.5; Dispersion parameter: 1.889941; Number of Fisher 
scoring iterations: 9. 

Table 58. Calibrated Coefficients for KABCO Crashes on Two Lanes—Ohio Only. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  0.5638 0.0562 10.0240 <0.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡 Traffic volume (AADT) 0.2610 0.0122 21.3290 <0.0001 

𝑏𝑏𝑡𝑡 Segment length (Len) 0.0092 0.0087 1.0560 <0.0001 
𝑏𝑏𝑠𝑠𝑙𝑙 Lane width (LW) 0.0162 0.0814 0.1990 0.2910 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of precipitation (PPrep) 0.0156 0.0127 1.2320 0.8425 
𝑏𝑏𝑛𝑛𝑒𝑒 Number of curvatures (NCurv) −0.0417 0.1180 −0.3540 0.2180 
𝑏𝑏𝑡𝑡𝑒𝑒  Total length of curvatures (LCurv) 0.0380 0.0073 5.2380 0.7235 

𝑏𝑏𝑠𝑠𝑠𝑠𝑑𝑑 Standard deviation of daily average speed 
(SDDailySpd) 

0.0062 0.0034 −1.8150 <0.0001 

𝑏𝑏𝑑𝑑𝑠𝑠𝑠𝑠 Daily average speed (SpdAvgDaily) 0.5638 0.0562 10.0240 <0.0695 
Note: Null deviance: 22,399; Residual deviance: 21,404; Dispersion parameter: 1.7398; Number of Fisher scoring 
iterations: 7.  
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Table 59. Calibrated Coefficients for KABC Crashes on Two Lanes—Ohio Only. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −14.2000 1.1780 −12.0570 <0.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.7720 0.1105 6.9830 <0.0001 

𝑏𝑏𝑡𝑡 Segment length (Len) 0.2320 0.0241 9.6300 <0.0001 
𝑏𝑏𝑠𝑠𝑙𝑙 Lane width (LW) −0.0001 0.0175 −0.0040 0.9970 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of precipitation (PPrep) 0.0279 0.1556 0.1800 0.8580 
𝑏𝑏𝑛𝑛𝑒𝑒 Number of curvatures (NCurv) 0.0229 0.0238 0.9600 0.3370 
𝑏𝑏𝑡𝑡𝑒𝑒  Total length of curvatures (LCurv) 0.0916 0.2213 0.4140 0.6790 

𝑏𝑏𝑠𝑠𝑠𝑠𝑑𝑑 Standard deviation of daily average speed 
(SDDailySpd) 

0.0954 0.0136 7.0390 <0.0001 

𝑏𝑏𝑑𝑑𝑠𝑠𝑠𝑠 Daily average speed (SpdAvgDaily) −0.0027 0.0066 −0.4140 0.6790 
Note: Null deviance: 8,330.9; Residual deviance: 7,905.7; Dispersion parameter: 1.9939; Number of Fisher scoring 
iterations: 9.  

Table 60. Calibrated Coefficients for KABCO Crashes on Two Lanes—Washington Only. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −11.8408 0.5244 −22.5780 <.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.7531 0.0414 18.1980 <.0001 
𝑏𝑏𝑡𝑡 Segment length (Len) 0.1609 0.0121 13.2730 <.0001 
𝑏𝑏𝑠𝑠𝑙𝑙 Lane width (LW) −0.0203 0.0082 −2.4830 0.0130 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of precipitation (PPrep) 0.1688 0.0688 2.4550 0.0141 
𝑏𝑏𝑛𝑛𝑒𝑒 Number of curvatures (NCurv) −0.0048 0.0029 −1.6470 0.0995 
𝑏𝑏𝑡𝑡𝑒𝑒  Total length of curvatures (LCurv) 0.1748 0.0354 4.9340 <.0001 

𝑏𝑏𝑠𝑠𝑠𝑠𝑑𝑑 Standard deviation of daily average speed 
(SDDailySpd) 0.0490 0.0076 6.4330 <.0001 

𝑏𝑏𝑑𝑑𝑠𝑠𝑠𝑠 Daily average speed (SpdAvgDaily) −0.0036 0.0037 −0.9600 0.3368 
Note: Null deviance: 5,289.4; Residual deviance: 4,828.1; Dispersion parameter: 1.787657; Number of Fisher 
scoring iterations: 7. 

Table 61. Calibrated Coefficients for KABC Crashes on Two Lanes—Washington Only. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −13.1203 0.9968 −13.1620 <.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.8316 0.0739 11.2470 <.0001 
𝑏𝑏𝑡𝑡 Segment length (Len) 0.1448 0.0215 6.7190 <.0001 
𝑏𝑏𝑠𝑠𝑙𝑙 Lane width (LW) −0.0598 0.0194 −3.0830 0.0021 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of precipitation (PPrep) −0.0733 0.1567 −0.4680 0.6397 
𝑏𝑏𝑛𝑛𝑒𝑒 Number of curvatures (NCurv) 0.0027 0.0053 0.5190 0.6036 
𝑏𝑏𝑡𝑡𝑒𝑒  Total length of curvatures (LCurv) 0.0952 0.0667 1.4280 0.1533 

𝑏𝑏𝑠𝑠𝑠𝑠𝑑𝑑 Standard deviation of daily average speed 
(SDDailySpd) 0.0770 0.0135 5.7010 <.0001 

𝑏𝑏𝑑𝑑𝑠𝑠𝑠𝑠 Daily average speed (SpdAvgDaily) 0.0020 0.0067 0.2900 0.7718 
Note: Null deviance: 9,421.3; Residual deviance: 8,850.2; Dispersion parameter: 2.086383; Number of Fisher 
scoring iterations: 8. 
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Table 62. Calibrated Coefficients for KABCO Crashes on Multilane Roadways—
Ohio Only. 

Coefficient Variable Value Std. Dev t-statistic p-value 
𝑏𝑏0 Intercept  −13.1536 1.0677 −12.3190 <0.0001 

𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.7413 0.0534 13.8740 <0.0001 
𝑏𝑏𝑡𝑡 Segment length (Len) 0.2511 0.0121 20.8120 <0.0001 
𝑏𝑏𝑛𝑛𝑡𝑡 Number of lanes (Lanes) 0.2058 0.2458 0.8370 0.4024 
𝑏𝑏𝑠𝑠𝑙𝑙 Lane width (LW) −0.0125 0.0059 −2.1230 0.0338 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of precipitation (PPrep) −0.0956 0.0864 −1.1060 0.2686 
𝑏𝑏𝑛𝑛𝑒𝑒 Number of curvatures (NCurv) 0.0948 0.0321 2.9580 0.0031 
𝑏𝑏𝑡𝑡𝑒𝑒  Total length of curvatures (LCurv) −0.2487 0.1699 −1.4640 0.1431 

𝑏𝑏𝑠𝑠𝑠𝑠𝑑𝑑 Standard deviation of daily average speed 
(SDDailySpd) 

0.0806 0.0083 9.6570 <0.0001 

𝑏𝑏𝑑𝑑𝑠𝑠𝑠𝑠 Daily average speed (SpdAvgDaily) 0.0024 0.0028 0.8640 0.3874 
Note: Null deviance: 22,797; Residual deviance: 21,567; Dispersion parameter: 1.7192; Number of Fisher scoring 
iterations: 7. 

Table 63. Calibrated Coefficients for KABC Crashes on Multilane Roadways—Ohio Only. 
Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −16.1712 2.2335 −7.2400 <0.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.7784 0.1073 7.2570 <0.0001 

𝑏𝑏𝑡𝑡 Segment length (Len) 0.2259 0.0251 8.9840 <0.0001 
𝑏𝑏𝑠𝑠𝑙𝑙 Lane width (LW) 0.4187 0.5141 0.8140 0.4154 
𝑏𝑏𝑛𝑛𝑡𝑡 Number of lanes (Lanes) −0.0143 0.0115 −1.2470 0.2125 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of precipitation (PPrep) −0.1251 0.1778 −0.7040 0.4817 
𝑏𝑏𝑛𝑛𝑒𝑒 Number of curvatures (NCurv) 0.1038 0.0626 1.6590 0.0972 
𝑏𝑏𝑡𝑡𝑒𝑒  Total length of curvatures (LCurv) −0.2054 0.3349 −0.6130 0.5396 

𝑏𝑏𝑠𝑠𝑠𝑠𝑑𝑑 Standard deviation of daily average speed 
(SDDailySpd) 

0.1414 0.0160 8.8560 <0.0001 

𝑏𝑏𝑑𝑑𝑠𝑠𝑠𝑠 Daily average speed (SpdAvgDaily) 0.0054 0.0054 1.0000 0.3174 
Note: Null deviance: 7953.7; Residual deviance: 7474.9; Dispersion parameter: 2.0084; Number of Fisher scoring 
iterations: 8.  
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Table 64. Calibrated Coefficients for KABCO Crashes on Multilane Roadways—
Washington Only. 

Coefficient Variable Value Std. Dev t-statistic p-value 

𝑏𝑏0 Intercept  −13.8323 1.2798 −10.8080 <.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.9219 0.1066 8.6500 <.0001 
𝑏𝑏𝑡𝑡 Segment length (Len) 0.1939 0.0253 7.6740 <.0001 
𝑏𝑏𝑛𝑛𝑡𝑡 Number of lanes (Lanes) −0.4006 0.2329 −1.7200 0.4854 
𝑏𝑏𝑠𝑠𝑙𝑙 Lane width (LW) 0.0260 0.0087 2.9910 0.0028 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of precipitation (PPrep) 0.1190 0.1133 1.0500 0.2937 
𝑏𝑏𝑛𝑛𝑒𝑒 Number of curvatures (NCurv) 0.0125 0.0077 1.6290 0.1034 
𝑏𝑏𝑡𝑡𝑒𝑒  Total length of curvatures (LCurv) 0.1804 0.0828 2.1770 0.0295 

𝑏𝑏𝑠𝑠𝑠𝑠𝑑𝑑 Standard deviation of daily average speed 
(SDDailySpd) 0.0217 0.0204 1.0650 0.2869 

𝑏𝑏𝑑𝑑𝑠𝑠𝑠𝑠 Daily average speed (SpdAvgDaily) −0.0103 0.0072 −1.4300 0.1529 
Note: Null deviance: 6550.6; Residual deviance: 6378.5; Dispersion parameter: 1.656436; Number of Fisher 
scoring iterations: 8. 

Table 65. Calibrated Coefficients for KABC Crashes on Multilane Roadways—
Washington Only. 

Coefficient Variable Value Std. Dev t-statistic p-value 
𝑏𝑏0 Intercept  −15.6685 2.3476 −6.6740 <.0001 
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡  Traffic volume (AADT) 0.8258 0.1900 4.3470 <.0001 
𝑏𝑏𝑡𝑡 Segment length (Len) 0.2097 0.0435 4.8220 <.0001 
𝑏𝑏𝑠𝑠𝑙𝑙 Lane width (LW) −0.4010 0.4132 −0.9710 0.3317 
𝑏𝑏𝑛𝑛𝑡𝑡 Number of lanes (Lanes) 0.0268 0.0157 1.7050 0.0882 
𝑏𝑏𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒 Percentage of precipitation (PPrep) 0.2143 0.1836 1.1670 0.2432 
𝑏𝑏𝑛𝑛𝑒𝑒 Number of curvatures (NCurv) 0.0131 0.0140 0.9370 0.3490 
𝑏𝑏𝑡𝑡𝑒𝑒  Total length of curvatures (LCurv) 0.0872 0.1508 0.5780 0.5630 

𝑏𝑏𝑠𝑠𝑠𝑠𝑑𝑑 Standard deviation of daily average speed 
(SDDailySpd) 0.0694 0.0371 1.8700 0.0614 

𝑏𝑏𝑑𝑑𝑠𝑠𝑠𝑠 Daily average speed (SpdAvgDaily) 0.0127 0.0143 0.8860 0.3754 
Note: Null deviance: 2222.6; Residual deviance: 2066.2; Dispersion parameter: 1.994874; Number of Fisher 
scoring iterations: 9. 
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APPENDIX E. DATA PREPARATION FOR DATA STRUCTURE 3 

The project team prepared a retrospective time series dataset for analysis from the Washington 
and Ohio conflated databases. The dataset consisted of sets of consecutive epochs before and 
after the recorded crashes recorded at the TMCs in the conflated dataset. A maximum of 4 hours 
before and 4 hours after each crash were included in this set. The epochs in each set were labeled 
either as BI (before the incident), DI (during the incident of the 15-minute time bin), or AI (after 
the incident). Using the time stamps of the epochs labeled DI, the conflation team retrieved all 
available epochs with the same day of the year and same epoch number (for example, if an epoch 
labeled DI was a Friday at 8:15 a.m., the additional epochs in the database representing every 
Friday at 8:15 a.m. were retrieved). These reference epochs were labeled DR (during reference, 
meaning “reference for ‘during’ epoch”). Starting from the DR epoch, the same maximum 
4 hours were retrieved before and after the reference epochs. These additional reference epochs 
were labeled BR (BI reference) and AR (AI reference). 

The following steps were taken in preparing the data: 

• Step 0: Reformat the epoch data on a weekly basis.  
• Step 1: For each crash on a TMC, check if the crash is a single case (i.e., no other crashes 

occurred 4 hours before or 4 hours after the current epoch). If yes, select this epoch as a valid 
case, and assign a unique case ID. Flag the current epoch as during crash; flag the epochs 
within 4 hours before the current epoch as before crash; flag the epochs within 4 hours after 
the current epoch as after crash.  

• Step 2: On the same TMC, screen the same epoch on the same day of the week over all the 
other 51 weeks. Check if each potential reference epoch is independent (there is no crash 
within 4 hours before or after the epoch). If yes, select the epochs as references. Particularly, 
flag the one that has exactly the same epoch time as the crash as during reference; flag those 
4 hours prior to it as before reference; and flag those 4 hours after it as after reference. 
Assign the unique case ID of the corresponding crash case to all these reference epochs. 

• Step 3: For each reference epoch, calculate the week difference between it and the 
corresponding crash case. Negative indicates the reference epoch is prior to the crash, and 
positive indicates the reference epoch is after the crash. 

The process is illustrated in figure 28. Figure 28(a) shows the epoch data structure on a weekly 
basis over the whole year. In figure 28(b), there is a single crash case at epoch i on Thursday 
during week m. Figure 28(c) shows that reference epochs are selected on Thursday of week k. 
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(a) Epoch Data by Week over the Whole Year 

 
(b) Epoch Data with a Crash 

 
(c) Reference Epoch without Crashes 

Figure 28. Illustration of Reference Epoch Selection. 



 

103 

Using this dataset, the project team intended to develop models comparing the speed trends 
before and after each recorded crash to the trends of the reference sets of events. The initial 
hypotheses for these analyses were: 

1. By selecting the reference epochs to be the same day and time, a comparison of 
operations before each crash would allow researchers to draw conclusions about the 
operational impacts after each crash (after controlling for other factors). 

2. If the operations are not influential in crash risk, the comparison of operational trends 
before the crashes should not yield statistically significant differences (ceteris paribus) 
since crash occurrence should be statistically independent of operational conditions in 
this case. 

3. Alternatively, if operational differences are found for comparing epochs before crashes to 
the reference epochs, those differences may indicate operational conditions associated 
with changes in crash risk. 

To explore the research hypotheses above initially, the project team fitted a preliminary set of 
plots to the freeway data in the Washington conflated database. Nearly 3.2 million records were 
represented in this dataset, with a total of 1,906 freeway crashes and 94,468 reference events. 

The project team prepared a set of plots to visualize the operational differences between the 
incident and reference sets of epochs. First, a set of 500 incidents was selected at random from 
TMCs that come from freeways with four lanes (two in each direction). This was done because 
four-lane freeways are the most common cross-section and to avoid confounding of the trends 
with operational differences by the number of lanes. Then, a subset of five randomly selected 
references for each of those incidents was selected such that the maximum difference in time 
between the incident epoch and the reference epochs did not exceed 4 weeks (to avoid 
confounding with seasonal changes in the traffic). 

Figure 29 shows the trends for before, during, and after epochs across AADT values for all 
reference epochs. The trends are very close; they track each other and tend to intertwine, which 
strongly suggests that no significant operational differences exist between the three subsets of 
epochs. This figure mildly suggests that the DR epochs tend to represent higher speeds than the 
before and after ones at higher AADTs. 
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Figure 29. Median Operational Speeds Before, During, and After (Reference Epochs). 

However, the trends shown in figure 30 for the epochs around actual crashes are clearly very 
different from figure 29. First, the three trends are more spread out, strongly suggesting 
differences in operations attributable to crashes occurring. Second, the operational impact in the 
15 minutes around a crash is clearly a reduction of speeds, compared to the before-crash trend. 
The operational impact of the crashes appears to be higher at freeways with larger AADTs (i.e., a 
widening gap between the green and blue lines with increasing AADTs). Third, the trend for 
epochs before crashes tends to stay above the trend for epochs after crashes across the whole 
range of AADTs, which suggests partial recovery on operations after a crash occurred. 
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Figure 30. Median Operational Speeds Before, During, and After (Incident Epochs). 

Regarding the first hypothesis, it appears that the freeway dataset from Washington may offer 
preliminary evidence (per figure 30) that: 

• The operational impact of crash occurrences may be larger at locations with larger AADTs. 
• There may be a hysteresis effect on operations after a crash occurs (i.e., operations may not 

fully recover to the operational state from before the crash occurred). This may not be the 
case for all 4 hours after the incident. The black trend being below the green one in figure 30 
may be due to a few epochs immediately after the crash but with the potentially full 
operational recovery still possible if enough time elapses after the crash (the point of 
recovery can be modeled in this dataset). 

To explore the potential of this dataset to test the second and third hypotheses, researchers 
prepared the following plots comparing pairs of corresponding sets of epochs between the 
incident and reference subsets. Figures 31–33 have been supplemented with 95 percent 
confidence envelopes around the trend lines to easily identify significant differences between the 
trends. 



 

106 

 
Figure 31. Comparison of Incident and Reference Trends for “Before” Median Operational 

Speeds.  

Figure 31 shows that the before-crash periods tend to have lower speeds compared to their 
reference counterparts. The gap between the two trends appears to be between 2 and 3 mph 
maximum (at TMCs with AADTs around 30,000 vpd). However, the trends overlap at TMCs 
with AADTs larger than 40,000. This “tracking from below” feature of before-crash epochs 
suggests that congestion may be associated with an increased risk of crashes (congestion 
probably explains a reduction in operating speed since seasonal and daily fluctuations should be 
controlled for by having the same times and days of the week within a month of the crashes). 
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Figure 32. Comparison of Incident and Reference Trends for “During” Median 

Operational Speeds.  

Figure 32 shows that the 95 percent confidence envelopes for the median speed trends for the 
“during” epochs almost overlap at low AADTs. The difference is clearer at higher AADTs. Like 
the “before” periods, the epochs when crashes occur tend to have consistently lower operating 
speeds than their comparable reference epochs. The gap seems to be about 4 mph, slightly wider 
than that shown in figure 31. 

Figure 33 compares “after” trends. Compared to the “before” period plot, this plot suggests that 
operations may not fully recover to reference levels in the after period. 
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Figure 33. Comparison of Incident and Reference Trends for “After” Median Operational 

Speeds.  

The trends of all three subsets of epochs tend to consistently have lower operational speeds for 
crashes compared to references. This finding is probably indicative of congestion being more 
conducive to crash occurrence (especially because this observation is valid for the “before” sets 
of epochs). The paired comparisons for the “after” sets of epochs suggest that operations may not 
fully recover to normalcy after crashes, but this observation may also be true for a subset of 
epochs immediately after the crash occurs, though not for the whole 4-hour period in the analysis 
dataset.
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APPENDIX F. INTERACTIVE DATA VISUALIZATION 

 
Source: http://bit.ly/rss_sdi_dv 
 
 

http://bit.ly/rss_sdi_dv
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